-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrunner.py
206 lines (175 loc) · 6.62 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import logging
import os
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pytorch_lightning as pl
import seaborn as sns
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
from pytorch_lightning.utilities.model_summary import ModelSummary
from torchinfo import summary
import wandb
from dataloader import get_dataset
from models.score_base import TabScoreModel, VisionScoreModel
from ood_detection_helper import auxiliary_model_analysis, ood_metrics
mpl.rc("figure", figsize=(10, 4), dpi=100)
sns.set_theme()
def train(config, workdir):
torch.set_float32_matmul_precision("high")
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.manual_seed(config.seed)
np.random.seed(config.seed)
if "tab" in config.model.name:
model = TabScoreModel(config)
else:
model = VisionScoreModel(config)
train_loader, val_loader, test_loader = get_dataset(config)
#TODO: Add hyperprameters to workdir name
# Checkpoint that saves periodically to allow for resuming later
checkpoint_callback = ModelCheckpoint(
dirpath=f"{workdir}/checkpoints-meta/",
save_last=True, # Saves a copy as `last.ckpt`
every_n_train_steps=config.training.checkpoint_freq,
)
snapshot_callback = ModelCheckpoint(
dirpath=f"{workdir}/checkpoints/",
monitor="val_loss",
filename="{step}-{val_loss:.4f}",
save_top_k=2,
save_last=False,
every_n_train_steps=config.training.snapshot_freq,
)
callback_list = [checkpoint_callback, snapshot_callback]
if "tab" in config.model.name:
logging.info(ModelSummary(model, max_depth=3))
else:
summary(
model,
depth=3,
input_data=[
torch.zeros(
1,
config.data.categorical_channels + config.data.continuous_channels,
config.data.image_size,
config.data.image_size,
),
torch.zeros(
1,
),
],
)
wandb_logger = WandbLogger(log_model=False, save_dir="wandb")
wandb_logger.watch(model, log_freq=config.training.snapshot_freq, log="all")
tb_logger = TensorBoardLogger(
save_dir=f"{workdir}/tensorboard_logs/", name="", default_hp_metric=False
)
ckpt_path = None
if config.training.resume:
ckpt_path = f"{workdir}/checkpoints-meta/last.ckpt"
if not os.path.exists(ckpt_path):
raise FileNotFoundError
trainer = pl.Trainer(
# precision=16,
accelerator=str(config.device),
default_root_dir=workdir,
# max_epochs=config.training.n_epochs,
max_steps=config.training.n_steps,
gradient_clip_val=config.optim.grad_clip,
val_check_interval=config.training.eval_freq,
log_every_n_steps=config.training.log_freq,
callbacks=callback_list,
fast_dev_run=5 if config.devtest else 0,
enable_model_summary=False,
check_val_every_n_epoch=None,
logger=[tb_logger, wandb_logger],
# num_sanity_val_steps=0,
)
trainer.fit(model, train_loader, val_loader, ckpt_path=ckpt_path)
# eval(config, workdir, ckpt_num=-1)
def eval(config, workdir, ckpt_num=-1):
assert config.msma.checkpoint in ["best", "last"]
denoise = config.msma.denoise
ckpt_dir = "checkpoints" if config.msma.checkpoint == "best" else "checkpoints-meta"
ckpt_dir = os.path.join(workdir, ckpt_dir)
ckpts = sorted(os.listdir(ckpt_dir))
ckpt = ckpts[ckpt_num]
step = ckpt.split("-")[0]
fname = os.path.join(
workdir, "score_norms", f"{step}-{'denoise' if denoise else ''}-score_norms.npz"
)
print(
f"Evaluating {ckpt} with denoise = {denoise} and saving to {fname} if not already present."
)
if os.path.exists(fname):
print(f"Loading from {fname}")
with np.load(fname, allow_pickle=True) as npzfile:
outdict = {k: npzfile[k].item() for k in npzfile.files}
else:
scorenet = TabScoreModel.load_from_checkpoint(
checkpoint_path=os.path.join(ckpt_dir, ckpt), config=config
).cuda()
scorenet.eval().requires_grad_(False)
train_loader, val_loader, test_loader = get_dataset(config, train_mode=False)
outdict = {}
with torch.cuda.device(0):
for ds, loader in [
("train", train_loader),
("val", val_loader),
("test", test_loader),
]:
score_norms = []
labels = []
for x_batch, y in loader:
s = (
scorenet.scorer(x_batch.cuda(), denoise_step=denoise)
.cpu()
.numpy()
)
score_norms.append(s)
labels.append(y.numpy())
score_norms = np.concatenate(score_norms)
labels = np.concatenate(labels)
outdict[ds] = {"score_norms": score_norms, "labels": labels}
os.makedirs(os.path.join(workdir, "score_norms"), exist_ok=True)
fname = os.path.join(
workdir,
"score_norms",
f"{step}-{'denoise' if denoise else ''}-score_norms.npz",
)
with open(fname, "wb") as f:
np.savez_compressed(f, **outdict)
X_train = outdict["train"]["score_norms"]
np.random.seed(42)
np.random.shuffle(X_train)
X_val = outdict["val"]["score_norms"]
X_train = np.concatenate((X_train[: len(X_val)], X_val))
test_labels = outdict["test"]["labels"]
X_test = outdict["test"]["score_norms"][test_labels == 0]
X_ano = outdict["test"]["score_norms"][test_labels == 1]
results = auxiliary_model_analysis(
X_train,
X_test,
[X_ano],
components_range=range(5, 6, 1),
labels=["Train", "Inlier", "Outlier"],
)
ood_metrics(
-results["GMM"]["test_scores"],
-results["GMM"]["ood_scores"][0],
plot=True,
verbose=True,
)
plt.suptitle(f"{config.data.dataset} - GMM", fontsize=18)
plt.savefig(fname.replace("score_norms.npz", "gmm.png"), dpi=100)
ood_metrics(
results["KD"]["test_scores"],
results["KD"]["ood_scores"][0],
plot=True,
verbose=True,
)
plt.suptitle(f"{config.data.dataset} - KD Tree", fontsize=18)
plt.savefig(fname.replace("score_norms.npz", "kd.png"), dpi=100)
logging.info(results["GMM"]["metrics"])