-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflowutils.py
357 lines (291 loc) · 11.4 KB
/
flowutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import pdb
import normflows as nf
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
from normflows.distributions import BaseDistribution
def sanitize_locals(args_dict, ignore_keys=None):
if ignore_keys is None:
ignore_keys = []
if not isinstance(ignore_keys, list):
ignore_keys = [ignore_keys]
_dict = args_dict.copy()
_dict.pop("self")
class_name = _dict.pop("__class__").__name__
class_params = {k: v for k, v in _dict.items() if k not in ignore_keys}
return {class_name: class_params}
def build_flows(
latent_size, num_flows=4, num_blocks_per_flow=2, hidden_units=128, context_size=64
):
# Define flows
flows = []
flows.append(
nf.flows.MaskedAffineAutoregressive(
latent_size,
hidden_features=hidden_units,
num_blocks=num_blocks_per_flow,
context_features=context_size,
)
)
for i in range(num_flows):
flows += [
nf.flows.CoupledRationalQuadraticSpline(
latent_size,
num_blocks=num_blocks_per_flow,
num_hidden_channels=hidden_units,
num_context_channels=context_size,
)
]
flows += [nf.flows.LULinearPermute(latent_size)]
# Set base distribution
context_encoder = nn.Sequential(
nn.Linear(context_size, context_size),
nn.SiLU(),
# output mean and scales for K=latent_size dimensions
nn.Linear(context_size, latent_size * 2),
)
q0 = ConditionalDiagGaussian(latent_size, context_encoder)
# Construct flow model
model = nf.ConditionalNormalizingFlow(q0, flows)
return model
class ConditionalDiagGaussian(BaseDistribution):
"""
Conditional multivariate Gaussian distribution with diagonal
covariance matrix, parameters are obtained by a context encoder,
context meaning the variable to condition on
"""
def __init__(self, shape, context_encoder):
"""Constructor
Args:
shape: Tuple with shape of data, if int shape has one dimension
context_encoder: Computes mean and log of the standard deviation
of the Gaussian, mean is the first half of the last dimension
of the encoder output, log of the standard deviation the second
half
"""
super().__init__()
if isinstance(shape, int):
shape = (shape,)
if isinstance(shape, list):
shape = tuple(shape)
self.shape = shape
self.n_dim = len(shape)
self.d = np.prod(shape)
self.context_encoder = context_encoder
def forward(self, num_samples=1, context=None):
encoder_output = self.context_encoder(context)
split_ind = encoder_output.shape[-1] // 2
mean = encoder_output[..., :split_ind]
log_scale = encoder_output[..., split_ind:]
eps = torch.randn(
(num_samples,) + self.shape, dtype=mean.dtype, device=mean.device
)
z = mean + torch.exp(log_scale) * eps
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(
log_scale + 0.5 * torch.pow(eps, 2), list(range(1, self.n_dim + 1))
)
return z, log_p
def log_prob(self, z, context=None):
encoder_output = self.context_encoder(context)
split_ind = encoder_output.shape[-1] // 2
mean = encoder_output[..., :split_ind]
log_scale = encoder_output[..., split_ind:]
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(
log_scale + 0.5 * torch.pow((z - mean) / torch.exp(log_scale), 2),
list(range(1, self.n_dim + 1)),
)
return log_p
def get_emb(sin_inp):
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return torch.flatten(emb, -2, -1)
class PositionalEncoding2D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding2D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 4) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.register_buffer("cached_penc", None, persistent=False)
def forward(self, tensor):
"""
:param tensor: A 4d tensor of size (batch_size, x, y, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, ch)
"""
if len(tensor.shape) != 4:
raise RuntimeError("The input tensor has to be 4d!")
if (
self.cached_penc is not None
and self.cached_penc.shape[:2] == tensor.shape[1:3]
):
return self.cached_penc
self.cached_penc = None
batch_size, orig_ch, x, y = tensor.shape
pos_x = torch.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
pos_y = torch.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1)
emb_y = get_emb(sin_inp_y)
emb = torch.zeros(
(x, y, self.channels * 2),
device=tensor.device,
dtype=tensor.dtype,
)
emb[:, :, : self.channels] = emb_x
emb[:, :, self.channels : 2 * self.channels] = emb_y
self.cached_penc = emb
return self.cached_penc
class SpatialNormer(nn.Module):
def __init__(
self,
in_channels, # channels will be number of sigma scales in input
kernel_size=3,
stride=2,
padding=1,
):
"""
Note that the convolution will reduce the channel dimension
So (b, num_sigmas, c, h, w) -> (b, num_sigmas, new_h , new_w)
"""
super().__init__()
self.conv = nn.Conv3d(
in_channels,
in_channels,
kernel_size,
# This is the real trick that ensures each
# sigma dimension is normed separately
groups=in_channels,
stride=(1, stride, stride),
padding=(0, padding, padding),
bias=False,
)
self.conv.weight.data.fill_(1) # all ones weights
self.conv.weight.requires_grad = False # freeze weights
@torch.no_grad()
def forward(self, x):
return self.conv(x.square()).pow_(0.5).squeeze(2)
class PatchFlow(torch.nn.Module):
def __init__(
self,
input_size,
patch_size=3,
context_embedding_size=128,
num_flows=4,
num_blocks_per_flow=2,
hidden_units=128,
):
super().__init__()
self.config = sanitize_locals(locals(), ignore_keys="input_size")
num_sigmas, c, h, w = input_size
self.local_pooler = SpatialNormer(
in_channels=num_sigmas, kernel_size=patch_size
)
self.flows = build_flows(
latent_size=num_sigmas,
context_size=context_embedding_size,
num_flows=num_flows,
num_blocks_per_flow=num_blocks_per_flow,
hidden_units=hidden_units,
)
self.position_encoding = PositionalEncoding2D(channels=context_embedding_size)
# caching pos encs
_, _, ctx_h, ctw_w = self.local_pooler(
torch.empty((1, num_sigmas, c, h, w))
).shape
self.position_encoding(torch.empty(1, 1, ctx_h, ctw_w))
assert self.position_encoding.cached_penc.shape[-1] == context_embedding_size
def init_weights(self):
# Initialize weights with Xavier
linear_modules = list(
filter(lambda m: isinstance(m, nn.Linear), self.flows.modules())
)
total = len(linear_modules)
for idx, m in enumerate(linear_modules):
# Last layer gets init w/ zeros
if idx == total - 1:
nn.init.zeros_(m.weight.data)
else:
nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias.data)
def forward(self, x, chunk_size=32):
b, s, c, h, w = x.shape
x_norm = self.local_pooler(x)
_, _, new_h, new_w = x_norm.shape
context = self.position_encoding(x_norm)
# (Patches * batch) x channels
local_ctx = rearrange(context, "h w c -> (h w) c")
patches = rearrange(x_norm, "b c h w -> (h w) b c")
nchunks = (patches.shape[0] + chunk_size - 1) // chunk_size
patches = patches.chunk(nchunks, dim=0)
ctx_chunks = local_ctx.chunk(nchunks, dim=0)
patch_logpx = []
# gc = repeat(global_ctx, "b c -> (n b) c", n=self.patch_batch_size)
for p, ctx in zip(patches, ctx_chunks):
# num patches in chunk (<= chunk_size)
n = p.shape[0]
ctx = repeat(ctx, "n c -> (n b) c", b=b)
p = rearrange(p, "n b c -> (n b) c")
# Compute log densities for each patch
logpx = self.flows.log_prob(p, context=ctx)
logpx = rearrange(logpx, "(n b) -> n b", n=n, b=b)
patch_logpx.append(logpx)
# Convert back to image
logpx = torch.cat(patch_logpx, dim=0)
logpx = rearrange(logpx, "(h w) b -> b 1 h w", b=b, h=new_h, w=new_w)
return logpx.contiguous()
@staticmethod
def stochastic_step(
scores, x_batch, flow_model, opt=None, train=False, n_patches=32, device="cpu"
):
if train:
flow_model.train()
opt.zero_grad(set_to_none=True)
else:
flow_model.eval()
patches, context = PatchFlow.get_random_patches(
scores, x_batch, flow_model, n_patches
)
patch_feature = patches.to(device)
context_vector = context.to(device)
patch_feature = rearrange(patch_feature, "n b c -> (n b) c")
context_vector = rearrange(context_vector, "n b c -> (n b) c")
# global_pooled_image = flow_model.global_pooler(x_batch)
# global_context = flow_model.global_attention(global_pooled_image)
# gctx = repeat(global_context, "b c -> (n b) c", n=n_patches)
# # Concatenate global context to local context
# context_vector = torch.cat([context_vector, gctx], dim=1)
# z, ldj = flow_model.flows.inverse_and_log_det(
# patch_feature,
# context=context_vector,
# )
loss = flow_model.flows.forward_kld(patch_feature, context_vector)
loss *= n_patches
if train:
loss.backward()
opt.step()
return loss.item() / n_patches
@staticmethod
def get_random_patches(scores, x_batch, flow_model, n_patches):
b = scores.shape[0]
h = flow_model.local_pooler(scores)
patches = rearrange(h, "b c h w -> (h w) b c")
context = flow_model.position_encoding(h)
context = rearrange(context, "h w c -> (h w) c")
context = repeat(context, "n c -> n b c", b=b)
# conserve gpu memory
patches = patches.cpu()
context = context.cpu()
# Get random patches
total_patches = patches.shape[0]
shuffled_idx = torch.randperm(total_patches)
rand_idx_batch = shuffled_idx[:n_patches]
return patches[rand_idx_batch], context[rand_idx_batch]