-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
350 lines (298 loc) · 14.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import argparse
import os
import re
import tensorflow as tf
import configs
from model.refinenet import RefineNet, RefineNetTwoResidual, MaskedRefineNet
from model.resnet import ResNet
dict_datasets_image_size = {
"circles": (64,64,1),
"highres": (2048,1024,3),
"brain": (91,109,1),
"masked_brain": (91,109,2),
"seg_brain": (91,109,8),
"pet" : (64,64,3),
"masked_pet" : (64,64,4),
"blown_fashion": (56, 56, 1),
"blown_masked_fashion": (56, 56, 2),
'masked_fashion': (28, 28, 2),
'fashion_mnist': (28, 28, 1),
'mnist_ood': (28, 28, 1),
'mnist': (28, 28, 1),
'cifar10': (32, 32, 3),
"masked_cifar10": (32,32,4),
"seg_cifar10": (32,32,14),
"multiscale_cifar10": (32,32,6),
'celeb_a': (32, 32, 3),
"svhn_cropped": (32, 32, 3),
}
dict_train_size = {
"circles": 100000,
"svhn_cropped": 73000,
'cifar10': 60000,
"brain": 10500,
"masked_brain": 10500,
"seg_brain": 10500,
"masked_cifar10": 40000,
"seg_cifar10": 40000,
"multiscale_cifar10":50000,
"pet" : 6500,
"masked_pet" : 6500,
"blown_fashion": 60000,
"blown_masked_fashion": 60000,
'masked_fashion': 60000,
'fashion_mnist': 60000,
'mnist_ood': 60000,
'mnist': 60000,
}
dict_splits = {
"masked_fashion": (1,1),
"masked_brain": (1,1),
"seg_brain": (1,7),
"masked_cifar10": (3,1),
"seg_cifar10": (3,11),
"multiscale_cifar10": (3,3)
}
def find_k_closest(image, k, data_as_array):
l2_distances = tf.reduce_sum(tf.square(data_as_array - image), axis=[1, 2, 3])
_, smallest_idx = tf.math.top_k(-l2_distances, k)
closest_k = tf.gather(data_as_array, smallest_idx[:k])
return closest_k, smallest_idx[:k]
def get_dataset_image_size(dataset_name):
return dict_datasets_image_size[dataset_name]
def check_args_validity(args):
assert args.model in ["baseline", "resnet", "refinenet", "refinenet_twores", "masked_refinenet"]
if args.max_to_keep == -1:
args.max_to_keep = None
args.split = args.split.split(",")
args.split = list(map(lambda x: x.strip(), args.split))
return
def _build_parser():
parser = argparse.ArgumentParser(description='CLI Options')
parser.add_argument('--experiment', default='train', help="what experiment to run (default: train)")
parser.add_argument('--dataset', default='mnist',
help="tfds name of dataset (default: 'mnist')")
parser.add_argument('--model', default='refinenet',
help="Model to use. Can be \'refinenet\', \'resnet\', \'baseline\' (default: refinenet)")
parser.add_argument('--filters', default=128, type=int,
help='number of filters in the model. (default: 128)')
parser.add_argument('--num_L', default=10, type=int,
help="number of levels of noise to use (default: 10)")
parser.add_argument('--sigma_low', default=0.01, type=float,
help="lowest value for noise (default: 0.01)")
parser.add_argument('--sigma_high', default=1.0, type=float,
help="highest value for noise (default: 1.0)")
parser.add_argument('--sigma_sequence', default="geometric", type=str,
help="can be \'geometric\' or \'linear\' (default: geometric)")
parser.add_argument('--steps', default=200000, type=int,
help="number of steps to train the model for (default: 200000)")
parser.add_argument('--learning_rate', default=0.001, type=float,
help="learning rate for the optimizer")
parser.add_argument('--batch_size', default=128, type=int,
help="batch size (default: 128)")
parser.add_argument('--samples_dir', default='./samples/',
help="folder for saving samples (default: ./samples/)")
parser.add_argument('--checkpoint_dir', default='./saved_models/',
help="folder for saving model checkpoints (default: ./saved_models/)")
parser.add_argument('--checkpoint_freq', default=5000, type=int,
help="how often to save a model checkpoint (default: 5000 iterations)")
parser.add_argument('--resume', action='store_false',
help="whether to resume from latest checkpoint (default: True)")
parser.add_argument('--resume_from', default=-1, type=int,
help='Step of checkpoint where to resume the model from. (default: latest one)')
parser.add_argument('--init_samples', default="",
help="Folder with images to be used as x0 for sampling with annealed langevin dynamics")
parser.add_argument('--k', default=10, type=int,
help='number of nearest neighbours to find from data (default: 10)')
parser.add_argument('--eval_setting', default="sample", type=str,
help="can be \'sample\' or \'fid\' (default: sample)")
parser.add_argument('--ocnn', action='store_true',
help="whether to attach an ocnn to the model (default: False)")
parser.add_argument('--y_cond', action='store_true',
help="whether the model is conditioned on auxiallary y information (default: False)")
parser.add_argument('--max_to_keep', default=2, type=int,
help="Number of checkopints to keep saved (default: 2)")
parser.add_argument('--split', default='100,0', type=str,
help="optional train/validation split percentages e.g. 0.9*train, 0.1*train (default: 100,0 (all train, no val set) )")
return parser
def get_command_line_args():
parser = _build_parser()
parser = parser.parse_args()
check_args_validity(parser)
print("=" * 20 + "\nParameters: \n")
for key in parser.__dict__:
print(key + ': ' + str(parser.__dict__[key]))
print("=" * 20 + "\n")
return parser
def get_tensorflow_device():
device = 'gpu:0' if tf.test.is_gpu_available() else 'cpu'
print("Using device {}".format(device))
return device
def get_savemodel_dir():
models_dir = configs.config_values.checkpoint_dir
model_name = configs.config_values.model
# Folder name: model_name+filters+dataset+L
if not configs.config_values.model == 'baseline':
complete_model_name = '{}{}_{}_L{}_SH{:.0e}_SL{:.0e}/train_{}'.format(model_name, configs.config_values.filters,
configs.config_values.dataset, configs.config_values.num_L,
configs.config_values.sigma_high,
configs.config_values.sigma_low,
"_".join(configs.config_values.split)
)
else:
complete_model_name = '{}{}_{}_SL{:.0e}'.format(model_name, configs.config_values.filters, configs.config_values.dataset,configs.config_values.sigma_low)
folder_name = models_dir + complete_model_name + '/'
if configs.config_values.ocnn:
folder_name += "ocnn/"
return folder_name, complete_model_name
def evaluate_print_model_summary(model, verbose=True):
batch = 1
input_shape = (batch,) + get_dataset_image_size(configs.config_values.dataset)
print(input_shape)
x = [tf.ones(shape=input_shape), tf.ones(batch, dtype=tf.int32)]
model(x)
if verbose:
print(model.summary())
def attach_ocnn(top=True, encoding=False):
pass
def try_load_model(save_dir, step_ckpt=-1, return_new_model=True, verbose=True, ocnn=False):
"""
Tries to load a model from the provided directory, otherwise returns a new initialized model.
:param save_dir: directory with checkpoints
:param step_ckpt: step of checkpoint where to resume the model from
:param verbose: true for printing the model summary
:return:
"""
ocnn_model=None
ocnn_optimizer=None
import tensorflow as tf
tf.compat.v1.enable_v2_behavior()
if configs.config_values.model == 'baseline':
configs.config_values.num_L = 1
splits=False
if configs.config_values.y_cond:
splits = dict_splits[configs.config_values.dataset]
# initialize return values
model_name = configs.config_values.model
if model_name == 'resnet':
model = ResNet(filters=configs.config_values.filters, activation=tf.nn.elu)
elif model_name in ['refinenet', 'baseline']:
model = RefineNet(filters=configs.config_values.filters, activation=tf.nn.elu,
y_conditioned=configs.config_values.y_cond, splits=splits)
elif model_name == 'refinenet_twores':
model = RefineNetTwoResidual(filters=configs.config_values.filters, activation=tf.nn.elu)
elif model_name == 'masked_refinenet':
print("Using Masked RefineNet...")
# assert configs.config_values.y_cond
model = MaskedRefineNet(filters=configs.config_values.filters, activation=tf.nn.elu,
splits=dict_splits[configs.config_values.dataset], y_conditioned=configs.config_values.y_cond)
optimizer = tf.keras.optimizers.Adam(learning_rate=configs.config_values.learning_rate)
step = 0
evaluate_print_model_summary(model, verbose)
if ocnn:
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Flatten, Dense, AvgPool2D
# Building OCNN on top
print("Building OCNN...")
Input = [Input(name="images", shape=(28,28,1)),
Input(name="idx_sigmas", shape=(), dtype=tf.int32)]
score_logits = model(Input)
x = Flatten()(score_logits)
x = Dense(128, activation="linear", name="embedding")(x)
dist = Dense(1, activation="linear", name="distance")(x)
ocnn_model = Model(inputs=Input, outputs=dist, name="OC-NN")
ocnn_optimizer = tf.keras.optimizers.Adam(learning_rate=1e-5)
evaluate_print_model_summary(ocnn_model, verbose=True)
# if resuming training, overwrite model parameters from checkpoint
if configs.config_values.resume:
if step_ckpt == -1:
print("Trying to load latest model from " + save_dir)
checkpoint = tf.train.latest_checkpoint(str(save_dir))
else:
print("Trying to load checkpoint with step", step_ckpt, " model from " + save_dir)
onlyfiles = [f for f in os.listdir(save_dir) if os.path.isfile(os.path.join(save_dir, f))]
# r = re.compile(".*step_{}-.*".format(step_ckpt))
r = re.compile("ckpt-{}\\..*".format(step_ckpt))
name_all_checkpoints = sorted(list(filter(r.match, onlyfiles)))
print(name_all_checkpoints)
# Retrieve name of the last checkpoint with that number of steps
name_ckpt = name_all_checkpoints[-1][:-6]
# print(name_ckpt)
checkpoint = save_dir + name_ckpt
if checkpoint is None:
print("No model found.")
if return_new_model:
print("Using a new model")
else:
print("Returning None")
model = None
optimizer = None
step = None
else:
step = tf.Variable(0)
if ocnn:
ckpt = tf.train.Checkpoint(step=step, optimizer=optimizer, model=model,
ocnn_model=ocnn_model, ocnn_optimizer=ocnn_optimizer)
else:
ckpt = tf.train.Checkpoint(step=step, optimizer=optimizer, model=model)
ckpt.restore(checkpoint)
step = int(step)
print("Loaded model: " + checkpoint)
return model, optimizer, step, ocnn_model, ocnn_optimizer
def get_sigma_levels():
if configs.config_values.model == 'baseline':
sigma_levels = tf.ones(1) * configs.config_values.sigma_low
elif configs.config_values.sigma_sequence == 'linear':
sigma_levels = tf.linspace(configs.config_values.sigma_high,
configs.config_values.sigma_low,
configs.config_values.num_L)
elif configs.config_values.sigma_sequence == 'geometric':
sigma_levels = tf.math.exp(tf.linspace(tf.math.log(configs.config_values.sigma_high),
tf.math.log(configs.config_values.sigma_low),
configs.config_values.num_L))
elif configs.config_values.sigma_sequence == 'hybrid':
sigma_levels_geometric = tf.math.exp(tf.linspace(tf.math.log(configs.config_values.sigma_high),
tf.math.log(configs.config_values.sigma_low),
configs.config_values.num_L))
sigma_levels_linear = tf.linspace(configs.config_values.sigma_high,
configs.config_values.sigma_low,
configs.config_values.num_L)
sigma_levels = (sigma_levels_geometric + sigma_levels_linear) / 2
return sigma_levels
def get_init_samples():
if configs.config_values.init_samples == "":
return None
path = configs.config_values.init_samples
if not os.path.exists(path):
raise ValueError("Path ", path, " does not exist.")
images = get_tensor_images_from_path(path)
images /= 255
return images
def get_tensor_images_from_path(path, resize=True):
images = []
for i, filename in enumerate(os.listdir(path)):
image = tf.io.decode_image(tf.io.read_file(path + '/' + filename))
if resize:
size = max(image.shape[0], image.shape[1])
is_square = image.shape[0] == image.shape[1]
if not is_square:
min_size = min(image.shape[0], image.shape[1])
image = tf.image.resize_with_crop_or_pad(image, min_size, min_size)
size = min_size
is_square = True
if size != 32 and is_square:
image = tf.image.resize(image, (32, 32))
images.append(image)
return tf.convert_to_tensor(images)
def manage_gpu_memory_usage():
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)