-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrq1.py
50 lines (43 loc) · 2.11 KB
/
rq1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from planner import *
from othertools import *
import matplotlib.pyplot as plt
def main():
score_2t = readfile('rq1_TimeLIME.csv')
score_2f = readfile('rq1_LIME.csv')
scores2_x = readfile('rq1_XTREE.csv')
scores2_alve = readfile('rq1_Alves.csv')
scores2_shat = readfile('rq1_Shat.csv')
scores2_oliv = readfile('rq1_Oliv.csv')
score2_rw = readfile('rq1_Random.csv')
plt.subplots(figsize=(7, 7))
plt.rcParams.update({'font.size': 16})
# ind=np.arange(10)
N = len(scores2_x)
width = 0.25
dummy1, dummy2, dummy3, dummy4, dummy5, dummy6, dummy7 = [], [], [], [], [], [], []
for i in range(0, len(scores2_x)):
dummy1.append(np.round(1 - np.mean(score_2t[i]), 3) * 20)
dummy2.append(np.round(1 - np.mean(score_2f[i]), 3) * 20)
dummy3.append(np.round(1 - np.mean(scores2_x[i]), 3) * 20)
dummy4.append(np.round(1 - np.mean(scores2_alve[i]), 3) * 20)
dummy5.append(np.round(1 - np.mean(scores2_shat[i]), 3) * 20)
dummy6.append(np.round(1 - np.mean(scores2_oliv[i]), 3) * 20)
dummy7.append(np.round(1 - np.mean(score2_rw[i]), 3) * 20)
plt.scatter(np.arange(N), dummy2, label='Classical LIME', s=100, marker='o')
plt.scatter(np.arange(N), dummy3, label='XTREE', s=100, marker='o')
plt.scatter(np.arange(N), dummy4, label='Alves', s=100, marker='o')
plt.scatter(np.arange(N), dummy5, label='Shatnawi', s=100, marker='o')
plt.scatter(np.arange(N), dummy6, label='Oliveira', s=100, marker='o')
plt.scatter(np.arange(N), dummy7, label='RandomWalk', s=100, marker='v')
plt.plot(np.arange(N), dummy1, label='TimeLIME', marker='^', markersize=10, color='#22406D')
# plt.ylim(-11,130)
plt.xticks(np.arange(N), ['jedit', 'camel1', 'camel2', 'log4j', 'xalan', 'ant', 'velocity', 'poi', 'synapse'])
plt.yticks([0, 2, 4, 6, 8, 10, 12])
plt.subplots_adjust(bottom=0.2, left=0, right=1.1)
plt.grid(axis='y')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.1), fancybox=True, shadow=True, ncol=3)
plt.savefig("rq1", dpi=200, bbox_inches='tight')
plt.show()
return
if __name__ == "__main__":
main()