-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_selector.py
391 lines (340 loc) · 14.2 KB
/
feature_selector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author : Suvodeep M (smajumd3@ncsu.edu)
"""
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
import scipy as sc
import pandas as pd
import numpy as np
import math
import measures
import time
import random
from sklearn import preprocessing
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.svm import LinearSVC
from sklearn.feature_selection import SelectFromModel
"""
@author: Suvodeep M
"""
class featureSelector():
def default(self,df):
"""
By default, do nothing
:param df:
:return:
"""
return df
def remain_same(self,df):
return df
def _ent(self,data):
"""
# Input a pandas series. calculate the entropy of series
:param data:
:return:
"""
p_data = data.value_counts() / len(data) # calculates the probabilities
entropy = sc.stats.entropy(p_data) # input probabilities to get the entropy
return entropy
def __init__(self):
self.clf = None
self.feature_importance = []
self.train_X = None
self.train_y = None
def featureExtractor(self ,train_X, train_y):
self.train_X = train_X
self.train_y = train_y
self.clf = SelectKBest(chi2, k=12)
self.train_X = self.clf.fit_transform(self.train_X, self.train_y)
print("shape: after:", self.train_X)
return self.train_X
def gain_rank(self, df):
"""
information gain attribute ranking
reference: sect 2.1 of hall et al. "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining"
requires: discretization
:param df:
:return:
"""
H_C = self._ent(df.iloc[:, -1])
weights = pd.DataFrame(data=np.zeros([1, df.shape[1] - 1]), columns=df.columns[:-1])
types_C = set(df.iloc[:, -1])
target = df.columns[-1]
for a_i, a in enumerate(df.columns[:-1]): # for each attribute a
for typea in set(df.loc[:, a]): # each class of attribute a
selected_a = df[df[a] == typea]
sub = 0
for typec in types_C:
p_c_a = selected_a[selected_a[target] == typec].shape[0] / selected_a.shape[0]
if p_c_a == 0:
continue
sub += p_c_a * math.log(p_c_a, 2)
weights.loc[0, a] += -1 * selected_a.shape[0] / df.shape[0] * sub
weights = H_C - weights
weights[df.columns[-1]] = 1
weights = weights.append([weights] * (df.shape[0] - 1), ignore_index=False)
weights.index = df.index
res = weights * df
return res,weights.iloc[0].values[0:len(weights.iloc[0].values)-1]
def relief(self, df, measures=measures.default):
"""
reference: sect 2.2 of hall et al. "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining"
reference2: Kononenko et al. "Estimating Attributes: Analysis and Extensions of Relief"
requires: discretization. distance measure provided
:param measures:
:param df:
:return:
"""
m = 20
k = 10
weights = pd.DataFrame(data=np.zeros([1, df.shape[1] - 1]), columns=df.columns[:-1])
target = df.columns[-1]
for i in range(m):
selected_row = df.sample(1).iloc[0, :]
dists = measures(selected_row, df)
df['d_'] = dists
hits = df[df[target] == df.iloc[0][-2]].iloc[:, :-1][:k]
miss = df[df[target] != df.iloc[0][-2]].iloc[:, :-1][:k]
# print(hits)
# import pdb
# pdb.set_trace()
t1 = np.sum(np.abs(hits.astype(np.float32) - selected_row.astype(np.float32)), axis=0) / (hits.shape[0] * m)
t2 = np.sum(np.abs(miss.astype(np.float32) - selected_row.astype(np.float32)), axis=0) / (miss.shape[0] * m)
weights = weights - t1 + t2
df.drop(['d_'], axis=1, inplace=True) # clear the distance
weights = weights.drop(df.columns[-1], axis=1)
weights = np.abs(weights)
weights[df.columns[-1]] = 1
weights = weights.append([weights] * (df.shape[0] - 1), ignore_index=True)
weights.index = df.index
return weights * df,weights.iloc[0].values
def consistency_subset(self, df):
"""
- Consistency-Based Subset Evaluation
- Subset evaluator use Liu and Setino's consistency metric
- reference: sect 2.5 of hall et al. "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining"
- requires: discreatization
:param df:
:return:
"""
def consistency(sdf, classes):
"""
Calculate the consistency of feature subset, which will be maximized
:param sdf: dataframe regrading to a subset feature
:return:
"""
sdf = sdf.join(classes)
uniques = sdf.drop_duplicates()
target = classes.name
subsum = 0
for i in range(uniques.shape[0] - 1):
row = uniques.iloc[i]
matches = sdf[sdf == row].dropna()
if matches.shape[0] <= 1: continue
D = matches.shape[0]
M = matches[matches[target] == float(matches.mode()[target])].shape[0]
subsum += (D - M)
return 1 - subsum / sdf.shape[0]
features = df.columns[:-1]
target = df.columns[-1]
hc_starts_at = time.time()
lst_improve_at = time.time()
best = [0, None]
while time.time() - lst_improve_at < 1 or time.time() - hc_starts_at < 5:
# during of random_config search -> at most 5 seconds. if no improve by 1 second, then stop
selects = [random.choice([0, 1]) for _ in range(len(features))]
if not sum(selects): continue
fs = [features[i] for i, v in enumerate(selects) if v]
score = consistency(df[fs], df[target])
if score > best[0]:
best = [score, fs]
lst_improve_at = time.time()
selected_features = best[1] + [target]
selected_features_list = []
for feature in features:
if feature in selected_features:
selected_features_list.append(1)
else:
selected_features_list.append(0)
return df[selected_features],selected_features_list
def cfs(self,df):
"""
- CFS = Correlation-based Feature Selection
- reference: sect 2.4 of hall et al. "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining"
reference2: Hall et al. "Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning"
- Good feature subsets contain features highly corrleated with the calss, yet uncorrelated with each other.
- random_config search is applied for figure out best feature subsets
:param df:
:return:
"""
features = df.columns[:-1]
target = df.columns[-1]
cf = pd.DataFrame(data=np.zeros([1, df.shape[1] - 1]), columns=features, index=df.columns[-1:])
ff = pd.DataFrame(data=np.zeros([len(features), len(features)]), index=features, columns=features)
# fill in cf
for attr in cf.columns:
cf.loc[target, attr] = abs(df[attr].corr(df[target], method='pearson'))
# fill in ff
for attr1 in ff.index:
for attr2 in ff.columns:
if attr1 == attr2: continue
if ff.loc[attr1, attr2]: continue
corr = abs(df[attr1].corr(df[attr2], method='pearson'))
ff.loc[attr1, attr2] = corr
ff.loc[attr2, attr1] = corr
def merit_S(fs, cf, ff):
"""
Calculate the heuristic (to maximize) according to Ghiselli 1964. eq1 in ref2
:param ff:
:param cf:
:param fs: feature_subset names
:return:
"""
r_cf = cf[fs].mean().mean()
r_ff = ff.loc[fs, fs].mean().mean()
k = len(fs)
return k * r_cf / math.sqrt(k + (k - 1) * r_ff)
# use stochastic search algorithm to figure out best subsets
# features subsets are encoded as [0/1]^F
hc_starts_at = time.time()
lst_improve_at = time.time()
best = [0, None]
while time.time() - lst_improve_at < 1 or time.time() - hc_starts_at < 5:
# during of random_config search -> at most 5 seconds. if no improve by 1 second, then stop
selects = [random.choice([0, 1]) for _ in range(len(features))]
if not sum(selects): continue
fs = [features[i] for i, v in enumerate(selects) if v]
score = merit_S(fs, cf, ff)
if score > best[0]:
best = [score, fs]
lst_improve_at = time.time()
selected_features = best[1] + [target]
selected_features_list = []
for feature in features:
if feature in selected_features:
selected_features_list.append(1)
else:
selected_features_list.append(0)
return df[selected_features],selected_features_list,selected_features
def cfs_bfs(self,df):
"""
- CFS = Correlation-based Feature Selection
- reference: sect 2.4 of hall et al. "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining"
reference2: Hall et al. "Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning"
- Good feature subsets contain features highly corrleated with the calss, yet uncorrelated with each other.
- random_config search is applied for figure out best feature subsets
:param df:
:return:
"""
print("{")
features = df.columns[:-1]
target = df.columns[-1]
print(target)
cf = pd.DataFrame(data=np.zeros([1, df.shape[1] - 1]), columns=features, index=df.columns[-1:])
ff = pd.DataFrame(data=np.zeros([len(features), len(features)]), index=features, columns=features)
# fill in cf
for attr in cf.columns:
cf.loc[target, attr] = abs(df[attr].corr(df[target], method='pearson'))
# fill in ff
for attr1 in ff.index:
for attr2 in ff.columns:
if attr1 == attr2: continue
if ff.loc[attr1, attr2]: continue
corr = abs(df[attr1].corr(df[attr2], method='pearson'))
ff.loc[attr1, attr2] = corr
ff.loc[attr2, attr1] = corr
def merit_S(fs, cf, ff):
"""
Calculate the heuristic (to maximize) according to Ghiselli 1964. eq1 in ref2
:param ff:
:param cf:
:param fs: feature_subset names
:return:
"""
r_cf = cf[fs].mean().mean()
r_ff = ff.loc[fs, fs].mean().mean()
k = len(fs)
return round(k * r_cf / math.sqrt(k + (k - 1) * r_ff),2)
# use stochastic search algorithm to figure out best subsets
# features subsets are encoded as [0/1]^F
F = []
# M stores the merit values
M = []
while True:
score = -100000000000
idx = -1
for i in features:
if i not in F:
F.append(i)
# calculate the merit of current selected features
t = merit_S(F,cf,ff)
if t > score:
score = t
idx = i
F.pop()
F.append(idx)
M.append(score)
similarity = 0
best = max(M)
if len(M) > 5:
if score <= M[len(M)-2]:
similarity += 1
if score <= M[len(M)-3]:
similarity += 1
if score <= M[len(M)-4]:
similarity += 1
if score <= M[len(M)-5]:
similarity += 1
break
print(F,M)
F = F[0:len(M)-similarity]
selected_features = F + [target]
selected_features_list = []
for feature in features:
if feature in selected_features:
selected_features_list.append(1)
else:
selected_features_list.append(0)
print("}")
return df[selected_features],selected_features_list,selected_features
def tfs(self,df,n_estimators=50):
"""
- tfs = Tree-based feature selection
- reference:
- Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module)
used to compute feature importances.
:param df:
:return:
"""
target = df.columns[-1]
X = df.drop(labels = [target], axis=1)
y = df[target]
clf = ExtraTreesClassifier(n_estimators=n_estimators)
clf.fit(X,y)
return 0,clf.feature_importances_
def l1(self,df,C=0.01,dual=False):
"""
- tfs = l1 regularization based feature selector
- reference:
- Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module)
used to compute feature importances.
:param df:
:return:
"""
features = df.columns[:-1]
target = df.columns[-1]
X = df.drop(labels = [target], axis=1)
y = df[target]
clf = LinearSVC(C=C, penalty="l1", dual=dual)
clf.fit(X, y)
model = SelectFromModel(clf, prefit=True)
selected_features = model.get_support(indices=False)
selected_features_list = []
for i in range(len(features)):
if selected_features[i] == True:
selected_features_list.append(1)
else:
selected_features_list.append(0)
return 0,selected_features_list