-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathmpc_plan.m
449 lines (387 loc) · 12.5 KB
/
mpc_plan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
function [pose, traj, flag] = mpc_plan(start, goal, varargin)
%%
% @file: mpc_plan.m
% @breif: Model Predicted Control (MPC) motion planning
% @author: Winter
% @update: 2023.2.7
p = inputParser;
addParameter(p, 'path', "none");
addParameter(p, 'map', "none");
parse(p, varargin{:});
if isstring(p.Results.path) || isstring(p.Results.map)
exception = MException('MyErr:InvalidInput', 'parameter `path` or `map` must be set.');
throw(exception);
end
% path
path = flipud(p.Results.path);
path = path_interpolation(path, 5);
% initial robotic state
robot.x = start(1);
robot.y = start(2);
robot.theta = start(3);
robot.v = 0;
robot.w = 0;
% common parameters
param.dt = 0.1;
param.max_iteration = 2000;
param.goal_dist_tol = 1.0;
param.rotate_tol = 0.5;
param.lookahead_time = 1.0;
param.min_lookahead_dist = 1.0;
param.max_lookahead_dist = 2.5;
param.max_v_inc = 0.5;
param.max_v = 1.0;
param.min_v = 0.0;
param.max_w_inc = pi / 2;
param.max_w = pi / 2;
param.min_w = 0.0;
% MPC parameters
param.Q = diag([1, 1, 1]);
param.R = diag([2, 2]);
param.p = 12;
param.m = 8;
param.u_min = [param.min_v; param.min_w];
param.u_max = [param.max_v; param.max_w];
param.du_min = [param.min_v; -param.max_w_inc];
param.du_max = [param.max_v_inc; param.max_w_inc];
% return value
flag = false;
pose = [];
traj = [];
% main loop
iter = 0;
u_p = [0, 0];
while iter < param.max_iteration
iter = iter + 1;
% break until goal reached
if shouldRotateToGoal([robot.x, robot.y], goal, param)
flag = true;
break;
end
% get the particular point on the path at the lookahead distance
[lookahead_pt, theta_trj, kappa] = getLookaheadPoint(robot, path, param);
% calculate velocity command
e_theta = regularizeAngle(robot.theta - goal(3)) / 10;
if shouldRotateToGoal([robot.x, robot.y], goal, param)
if ~shouldRotateToPath(abs(e_theta), 0.0, param)
u = [0, 0];
else
u = [0, angularRegularization(robot, e_theta / param.dt, param)];
end
else
e_theta = regularizeAngle( ...
atan2(real(lookahead_pt(2)) - robot.y, real(lookahead_pt(1)) - robot.x) - robot.theta ...
) / 10;
if shouldRotateToPath(abs(e_theta), pi / 4, param)
u = [0, angularRegularization(robot, e_theta / param.dt, param)];
else
% current state
s = [robot.x, robot.y, robot.theta];
% desired state
s_d = [real(lookahead_pt), theta_trj];
% refered input
u_r = [robot.v, theta_trj - robot.theta];
% control
[u, u_p] = mpcControl(s, s_d, u_r, u_p, robot, param);
end
end
% input into robotic kinematic
robot = f(robot, u, param.dt);
pose = [pose; robot.x, robot.y, robot.theta];
end
end
%%
function robot = f(robot, u, dt)
% robotic kinematic
F = [ 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0];
B = [dt * cos(robot.theta) 0
dt * sin(robot.theta) 0
0 dt
1 0
0 1];
x = [robot.x; robot.y; robot.theta; robot.v; robot.w];
x_star = F * x + B * u';
robot.x = x_star(1); robot.y = x_star(2); robot.theta = x_star(3);
robot.v = x_star(4); robot.w = x_star(5);
end
function theta = regularizeAngle(angle)
theta = angle - 2.0 * pi * floor((angle + pi) / (2.0 * pi));
end
function flag = shouldRotateToGoal(cur, goal, param)
%{
Whether to reach the target pose through rotation operation
Parameters
----------
cur: tuple
current pose of robot
goal: tuple
goal pose of robot
Return
----------
flag: bool
true if robot should perform rotation
%}
flag = hypot(cur(1) - goal(1), cur(2) - goal(2)) < param.goal_dist_tol;
end
function flag = shouldRotateToPath(angle_to_path, tol, param)
%{
Whether to correct the tracking path with rotation operation
Parameters
----------
angle_to_path: float
the angle deviation
tol: float[None]
the angle deviation tolerence
Return
----------
flag: bool
true if robot should perform rotation
%}
if tol == 0.0
flag = angle_to_path > param.rotate_tol;
else
flag = angle_to_path > tol;
end
end
function w = angularRegularization(robot, w_d, param)
%{
Angular velocity regularization
Parameters
----------
w_d: float
reference angular velocity input
Return
----------
w: float
control angular velocity output
%}
w_inc = w_d - robot.w;
if abs(w_inc) > param.max_w_inc
w_inc =param.max_w_inc * sign(w_inc);
end
w = robot.w + w_inc;
if abs(w) > param.max_w
w = param.max_w * sign(w);
end
if abs(w) < param.min_w
w = param.min_w * sign(w) ;
end
end
function v = linearRegularization(robot, v_d, param)
%{
Linear velocity regularization
Parameters
----------
v_d: float
reference velocity input
Return
----------
v: float
control velocity output
%}
v_inc = v_d - robot.v;
if abs(v_inc) > param.max_v_inc
v_inc = param.max_v_inc * sign(v_inc);
end
v = robot.v + v_inc;
if abs(v) > param.max_v
v = param.max_v * sign(v);
end
if abs(v) < param.min_v
v = param.min_v * sign(v);
end
end
function d = getLookaheadDistance(robot, param)
d = robot.v * param.lookahead_time;
if d < param.min_lookahead_dist
d = param.min_lookahead_dist;
end
if d > param.max_lookahead_dist
d = param.max_lookahead_dist;
end
end
function [pt, theta, kappa] = getLookaheadPoint(robot, path, param)
%{
Find the point on the path that is exactly the lookahead distance away from the robot
Return
----------
lookahead_pt: tuple
lookahead point
theta: float
the angle on trajectory
kappa: float
the curvature on trajectory
%}
% Find the first pose which is at a distance greater than the lookahead distance
dist_to_robot = [];
[pts_num, ~] = size(path);
for i=1:pts_num
dist_to_robot(end + 1) = hypot(path(i, 1) - robot.x, path(i, 2) - robot.y);
end
[~, idx_closest] = min(dist_to_robot);
idx_goal = pts_num - 1; idx_prev = idx_goal - 1;
lookahead_dist = getLookaheadDistance(robot, param);
for i=idx_closest:pts_num
if hypot(path(i, 1) - robot.x, path(i, 2) - robot.y) >= lookahead_dist
idx_goal = i;
break;
end
end
if idx_goal == pts_num - 1
% If the no pose is not far enough, take the last pose
pt = [path(idx_goal, 1), path(idx_goal, 2)];
else
if idx_goal == 1
idx_goal = idx_goal + 1;
end
% find the point on the line segment between the two poses
% that is exactly the lookahead distance away from the robot pose (the origin)
% This can be found with a closed form for the intersection of a segment and a circle
idx_prev = idx_goal - 1;
px = path(idx_prev, 1); py = path(idx_prev, 2);
gx = path(idx_goal, 1); gy = path(idx_goal, 2);
% transform to the robot frame so that the circle centers at (0,0)
prev_p = [px - robot.x, py - robot.y];
goal_p = [gx - robot.x, gy - robot.y];
i_points = circleSegmentIntersection(prev_p, goal_p, lookahead_dist);
pt = [i_points(1, 1) + robot.x, i_points(1, 2) + robot.y];
end
% calculate the angle on trajectory
theta = atan2(path(idx_goal, 2) - path(idx_prev, 2), path(idx_goal, 1) - path(idx_prev, 1));
% calculate the curvature on trajectory
if idx_goal == 2
idx_goal = idx_goal + 1;
end
idx_prev = idx_goal - 1;
idx_pprev = idx_prev - 1;
a = hypot(path(idx_prev, 1) - path(idx_goal, 1), path(idx_prev, 2) - path(idx_goal, 2));
b = hypot(path(idx_pprev, 1) - path(idx_goal, 1), path(idx_pprev, 2) - path(idx_goal, 2));
c = hypot(path(idx_pprev, 1) - path(idx_prev, 1), path(idx_pprev, 2) - path(idx_prev, 2));
cosB = (a * a + c * c - b * b) / (2 * a * c);
sinB = sin(acos(cosB));
cross = (path(idx_prev, 1) - path(idx_pprev, 1)) * ...
(path(idx_goal, 2) - path(idx_pprev, 2)) - ...
(path(idx_prev, 2) - path(idx_pprev, 2)) * ...
(path(idx_goal, 1) - path(idx_pprev, 1));
kappa = 2 * sinB / b *sign(cross);
end
function i_points = circleSegmentIntersection(p1, p2, r)
x1 = p1(1); x2 = p2(1);
y1 = p1(2); y2 = p2(2);
dx = x2 - x1; dy = y2 - y1;
dr2 = dx * dx + dy * dy;
D = x1 * y2 - x2 * y1;
% the first element is the point within segment
d1 = x1 * x1 + y1 * y1;
d2 = x2 * x2 + y2 * y2;
dd = d2 - d1;
delta = sqrt(r * r * dr2 - D * D);
if delta >= 0
if delta == 0
i_points = [D * dy / dr2, -D * dx / dr2];
else
i_points = [
(D * dy + sign(dd) * dx * delta) / dr2, ...
(-D * dx + sign(dd) * dy * delta) / dr2; ...
(D * dy - sign(dd) * dx * delta) / dr2, ...
(-D * dx - sign(dd) * dy * delta) / dr2
];
end
else
i_points = [];
end
end
function path_new = path_interpolation(path, n)
for i=1:n
path_new = path;
path_inter = path_new(1:end - 1, :) + diff(path_new) / 2;
path = zeros(length(path_new) + length(path_inter), 2);
path(1:2:end, :) = path_new;
path(2:2:end, :) = path_inter;
end
end
function [u, u_p_new] = mpcControl(s, s_d, u_r, u_p, robot, param)
%{
Execute MPC control process.
Parameters
----------
s: tuple
current state
s_d: tuple
desired state
u_r: tuple
refered control
u_p: tuple
previous control error
Return
----------
u: np.ndarray
control vector
%}
dim_u = 2; dim_x = 3;
dt = param.dt;
% state vector (5 x 1)
x = [s - s_d, u_p]';
% original state matrix
A = eye(3);
A(1, 3) = -u_r(1) * sin(s_d(3)) * dt;
A(2, 3) = u_r(1) * cos(s_d(3)) * dt;
% original control matrix
B = zeros(3, 2);
B(1, 1) = cos(s_d(3)) * dt;
B(2, 1) = sin(s_d(3)) * dt;
B(3, 2) = dt;
% discrete iteration Ricatti equation
P = param.Q;
% state matrix (5 x 5)
A = [A, B; zeros(dim_u, dim_x), eye(dim_u)];
% control matrix (5 x 2)
B = [B; eye(dim_u)];
% output matrix (3 x 5)
C = [eye(dim_x), zeros(dim_x, dim_u)];
% mpc state matrix (3p x 5)
S_x_cell = cell(param.p, 1);
for i=1:param.p
S_x_cell{i, 1} = C * A ^ i;
end
S_x = cell2mat(S_x_cell);
% mpc control matrix (3p x 2m)
S_u_cell = cell(param.p, param.m);
for i = 1:param.p
for j = 1:param.m
if j <= i
S_u_cell{i, j} = C * A ^ (i - j) * B;
else
S_u_cell{i, j} = zeros(dim_x, dim_u);
end
end
end
S_u = cell2mat(S_u_cell);
% optimization
Yr = zeros(3 * param.p, 1); % (3p x 1)
Q = kron(eye(param.p), param.Q); % (3p x 3p)
R = kron(eye(param.m), param.R); % (2m x 2m)
H = S_u' * Q * S_u + R; % (2m x 2m)
g = S_u' * Q * (S_x * x - Yr); % (2m x 1)
% constriants
A_I = kron(tril(ones(param.m, param.m)), diag([1, 1]));
U_min = kron(ones(param.m, 1), param.u_min);
U_max = kron(ones(param.m, 1), param.u_max);
U_k_1 = kron(ones(param.m, 1), u_p');
% boundary
dU_min = kron(ones(param.m, 1), param.du_min);
dU_max = kron(ones(param.m, 1), param.du_max);
% solve
options = optimoptions('quadprog', 'MaxIterations', 100, 'TolFun', 1e-16, 'Display','off');
dU_opt = quadprog(H, g, [-A_I; A_I], [-U_min + U_k_1; U_max - U_k_1], [], [], dU_min, dU_max, [], options);
% first element
du = [dU_opt(1), dU_opt(2)];
% real control
u = du + u_p + u_r;
u = [linearRegularization(robot, u(1), param), angularRegularization(robot, u(2), param)];
u_p_new = u - u_r;
end