大部初学程序员都是从阻塞IO调用开始的。如果一个IO调用是同步的,当你调用它,它不会返回,直到这个操作完成或者过去足够多的时间使你的网络栈自动放弃。 当你在一个TCP连接上调用connect()
,例如,你的操作系统队列一个SYN包到达主机上TCP连接的另一边。它不会把控制权交给你,直到你接收到对面的一个SYN ACK包或者直到过去了足够多的时间以至于它决定放弃。
这有一个非常简单的例子使用阻塞网络调用。它去打开一个www.google.com的连接,发送一个简单的HTTP请求,然后打印响应到标准输出.(google大陆被墙,主机可以换成www.baidu.com)
例子:一个简单的阻塞HTTP 客户端
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For gethostbyname */
#include <netdb.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
int main(int c, char **v)
{
const char query[] =
"GET / HTTP/1.0\r\n"
"Host: www.google.com\r\n"
"\r\n";
const char hostname[] = "www.google.com";
struct sockaddr_in sin;
struct hostent *h;
const char *cp;
int fd;
ssize_t n_written, remaining;
char buf[1024];
/* Look up the IP address for the hostname. Watch out; this isn't
threadsafe on most platforms. */
h = gethostbyname(hostname);
if (!h) {
fprintf(stderr, "Couldn't lookup %s: %s", hostname, hstrerror(h_errno));
return 1;
}
if (h->h_addrtype != AF_INET) {
fprintf(stderr, "No ipv6 support, sorry.");
return 1;
}
/* Allocate a new socket */
fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return 1;
}
/* Connect to the remote host. */
sin.sin_family = AF_INET;
sin.sin_port = htons(80);
sin.sin_addr = *(struct in_addr*)h->h_addr;
if (connect(fd, (struct sockaddr*) &sin, sizeof(sin))) {
perror("connect");
close(fd);
return 1;
}
/* Write the query. */
/* XXX Can send succeed partially? */
cp = query;
remaining = strlen(query);
while (remaining) {
n_written = send(fd, cp, remaining, 0);
if (n_written <= 0) {
perror("send");
return 1;
}
remaining -= n_written;
cp += n_written;
}
/* Get an answer back. */
while (1) {
ssize_t result = recv(fd, buf, sizeof(buf), 0);
if (result == 0) {
break;
} else if (result < 0) {
perror("recv");
close(fd);
return 1;
}
fwrite(buf, 1, result, stdout);
}
close(fd);
return 0;
}
上述的代码所有的网络调用都是阻塞的:gethostbyname
函数直到www.google.com解析成功或者失败后才会返回;connect
函数直到连接成功才返回;recv
函数直到接收到数据或者一个关闭才会返回;send
函数直到最后刷新它的输出到内核写缓冲区。
现在,IO阻塞并不是不幸的。在此期间如果你的程序不去做其他事情,那么对你来说阻塞IO将工作的很好。 但是,假设你需要写一个程序去处理同时处理多个连接。让我们来具体的举一个例子:加入你想从两个连接中读取输入,但是你不知道那个连接将第一个输入。你不能说
坏例子
/*这些代码不能工作*/
char buf[1024];
int i, n;
while (i_still_want_to_read()) {
for (i=0; i<n_sockets; ++i) {
n = recv(fd[i], buf, sizeof(buf), 0);
if (n==0)
handle_close(fd[i]);
else if (n<0)
handle_error(fd[i], errno);
else
handle_input(fd[i], buf, n);
}
}
当有数据在fd[2]上到来时,你的程序不能读取fd[2]上的数据,在fd[0]和fd[1]上的数据读完之前。
有时候人们为了解决这个问题,采用多线程,或者多进程服务。其中一个最简单的方法就是用多线程,每一个线程去处理一个连接。这样每一个连接都有一个自己的进程,一个连接的IO阻塞调用等待不会影响其他连接的进程阻塞。
这还有另一个例子程序。这是一个微不足道的服务程序,监听TCP连接端口为40713,从输入一行,读取数据,经过ROT13处理后的数据写出。这里为每一个到来的连接调用Unix的fork()
来创建一个新的进程。
例子:ROT13分支出来的server
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define MAX_LINE 16384
char rot13_char(char c)
{
/* We don't want to use isalpha here; setting the locale would change
* which characters are considered alphabetical. */
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
void child(int fd)
{
char outbuf[MAX_LINE+1];
size_t outbuf_used = 0;
ssize_t result;
while (1) {
char ch;
result = recv(fd, &ch, 1, 0);
if (result == 0) {
break;
} else if (result == -1) {
perror("read");
break;
}
/* We do this test to keep the user from overflowing the buffer. */
if (outbuf_used < sizeof(outbuf)) {
outbuf[outbuf_used++] = rot13_char(ch);
}
if (ch == '\n') {
send(fd, outbuf, outbuf_used, 0);
outbuf_used = 0;
continue;
}
}
}
void
run(void)
{
int listener;
struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(40713);
listener = socket(AF_INET, SOCK_STREAM, 0);
#ifndef WIN32
{
int one = 1;
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
}
#endif
if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
perror("bind");
return;
}
if (listen(listener, 16)<0) {
perror("listen");
return;
}
while (1) {
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener, (struct sockaddr*)&ss, &slen);
if (fd < 0) {
perror("accept");
} else {
if (fork() == 0) {
child(fd);
exit(0);
}
}
}
}
int main(int c, char **v)
{
run();
return 0;
}
所以,我们有一个完美的解决方案去同时处理多连接?那我们现在可以停止写这本书,然后去干其他事情了吗?其实并不是.首先,进程的创建(或者线程的创建)在某些平台上是相当昂贵的。在现实生活中,你想用一个线程池,取代去创建新进程。但从根本上来说,线程不会像你想象的那么多。如果你的程序同时需要处理成千上万个连接,处理成千上万的线程是不会高效的,因为CPU处理器只能处理几个线程。
但是线程没有解决多个连接,怎么办? 在Unix套接字中,设置你的sockets非阻塞。在Unix中通过下面函数设置。
fcntl(fd, F_SETFL, O_NONBLOCK)
文件描述符fd就是socket函数创建的。一旦你设置了socket 描述符fd为非阻塞,当你让网络去调用fd,调用操作将立即完成或者返回一个错误标明"我不能现在无法取得任何进展,请重试"。所以我们两个socket例子可以写成这样:
坏例子:忙轮询所有套接字
/* This will work, but the performance will be unforgivably bad. */
int i, n;
char buf[1024];
for (i=0; i < n_sockets; ++i)
fcntl(fd[i], F_SETFL, O_NONBLOCK);
while (i_still_want_to_read()) {
for (i=0; i < n_sockets; ++i) {
n = recv(fd[i], buf, sizeof(buf), 0);
if (n == 0) {
handle_close(fd[i]);
} else if (n < 0) {
if (errno == EAGAIN)
; /* The kernel didn't have any data for us to read. */
else
handle_error(fd[i], errno);
} else {
handle_input(fd[i], buf, n);
}
}
}
现在,我们使用非阻塞的套接字,上面的代码将会工作,但是那只是勉强的工作。性能将会很糟糕,主要有两个原因。第一,当连接上没有数据去读的,将会一直轮询下去,你的CPU将整个被占用。第二,如果使用这种方法试着处理一个或者两个连接时,你将为每一个做一个内核调用,不管它是不是有数据给你。所以我们需要一种告诉内核"等待那些套接字有数据给我,并告诉我那些已经准备好了"。
旧的解决方案是人们一直使用select()
函数解决这个问题.select()
函数调用三套fds(以位数组方式实现):一个读,一个写,另一个异常处理。它等待,直到一个套接字从其中一个集合准备好,并且设置了集合包含准备使用的套接字。
这我们还有一个例子,使用select实现:
例子:使用select
/* If you only have a couple dozen fds, this version won't be awful */
fd_set readset;
int i, n;
char buf[1024];
while (i_still_want_to_read()) {
int maxfd = -1;
FD_ZERO(&readset);
/* Add all of the interesting fds to readset */
for (i=0; i < n_sockets; ++i) {
if (fd[i]>maxfd) maxfd = fd[i];
FD_SET(fd[i], &readset);
}
/* Wait until one or more fds are ready to read */
select(maxfd+1, &readset, NULL, NULL, NULL);
/* Process all of the fds that are still set in readset */
for (i=0; i < n_sockets; ++i) {
if (FD_ISSET(fd[i], &readset)) {
n = recv(fd[i], buf, sizeof(buf), 0);
if (n == 0) {
handle_close(fd[i]);
} else if (n < 0) {
if (errno == EAGAIN)
; /* The kernel didn't have any data for us to read. */
else
handle_error(fd[i], errno);
} else {
handle_input(fd[i], buf, n);
}
}
}
}
这有一个用select实现的POT13 服务端
例子:select()实现的POT13服务器
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>
/* for select */
#include <sys/select.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#define MAX_LINE 16384
char
rot13_char(char c)
{
/* We don't want to use isalpha here; setting the locale would change
* which characters are considered alphabetical. */
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
struct fd_state {
char buffer[MAX_LINE];
size_t buffer_used;
int writing;
size_t n_written;
size_t write_upto;
};
struct fd_state *
alloc_fd_state(void)
{
struct fd_state *state = malloc(sizeof(struct fd_state));
if (!state)
return NULL;
state->buffer_used = state->n_written = state->writing =
state->write_upto = 0;
return state;
}
void
free_fd_state(struct fd_state *state)
{
free(state);
}
void
make_nonblocking(int fd)
{
fcntl(fd, F_SETFL, O_NONBLOCK);
}
int
do_read(int fd, struct fd_state *state)
{
char buf[1024];
int i;
ssize_t result;
while (1) {
result = recv(fd, buf, sizeof(buf), 0);
if (result <= 0)
break;
for (i=0; i < result; ++i) {
if (state->buffer_used < sizeof(state->buffer))
state->buffer[state->buffer_used++] = rot13_char(buf[i]);
if (buf[i] == '\n') {
state->writing = 1;
state->write_upto = state->buffer_used;
}
}
}
if (result == 0) {
return 1;
} else if (result < 0) {
if (errno == EAGAIN)
return 0;
return -1;
}
return 0;
}
int
do_write(int fd, struct fd_state *state)
{
while (state->n_written < state->write_upto) {
ssize_t result = send(fd, state->buffer + state->n_written,
state->write_upto - state->n_written, 0);
if (result < 0) {
if (errno == EAGAIN)
return 0;
return -1;
}
assert(result != 0);
state->n_written += result;
}
if (state->n_written == state->buffer_used)
state->n_written = state->write_upto = state->buffer_used = 0;
state->writing = 0;
return 0;
}
void
run(void)
{
int listener;
struct fd_state *state[FD_SETSIZE];
struct sockaddr_in sin;
int i, maxfd;
fd_set readset, writeset, exset;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(40713);
for (i = 0; i < FD_SETSIZE; ++i)
state[i] = NULL;
listener = socket(AF_INET, SOCK_STREAM, 0);
make_nonblocking(listener);
#ifndef WIN32
{
int one = 1;
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
}
#endif
if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
perror("bind");
return;
}
if (listen(listener, 16)<0) {
perror("listen");
return;
}
FD_ZERO(&readset);
FD_ZERO(&writeset);
FD_ZERO(&exset);
while (1) {
maxfd = listener;
FD_ZERO(&readset);
FD_ZERO(&writeset);
FD_ZERO(&exset);
FD_SET(listener, &readset);
for (i=0; i < FD_SETSIZE; ++i) {
if (state[i]) {
if (i > maxfd)
maxfd = i;
FD_SET(i, &readset);
if (state[i]->writing) {
FD_SET(i, &writeset);
}
}
}
if (select(maxfd+1, &readset, &writeset, &exset, NULL) < 0) {
perror("select");
return;
}
if (FD_ISSET(listener, &readset)) {
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener, (struct sockaddr*)&ss, &slen);
if (fd < 0) {
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd);
} else {
make_nonblocking(fd);
state[fd] = alloc_fd_state();
assert(state[fd]);/*XXX*/
}
}
for (i=0; i < maxfd+1; ++i) {
int r = 0;
if (i == listener)
continue;
if (FD_ISSET(i, &readset)) {
r = do_read(i, state[i]);
}
if (r == 0 && FD_ISSET(i, &writeset)) {
r = do_write(i, state[i]);
}
if (r) {
free_fd_state(state[i]);
state[i] = NULL;
close(i);
}
}
}
}
int
main(int c, char **v)
{
setvbuf(stdout, NULL, _IONBF, 0);
run();
return 0;
}
但是我们并没有做完。因为生成和读select()
位数组所消耗的事件将与select提供的最大的fd成正比。当有大量的套接字的时候调用'select()'是很糟糕的。
不同的操作系统提供不同替换函数让你选择,这些包括poll()
,epoll()
,kqueue()
,evports
和/dev/poll
.这些的比select的性能更佳,除poll()
之外,其他的在添加一个套接字、删除一个套接字和通知一个套接字IO已经准备就绪的时间复杂度均为O(1)。
不幸的是,没有一个有效的接口作为一个标准。Linux 有epoll()
,BSD系统中有kqueue()
,Solaris系统中有evports 和 /dev/poll等,不同的系统有不同的实现。所以,如果你想写一个便捷的性能高的异步应用程序,你需要有一个包含这些抽象接口的统一接口,来根据不同的平台提供有效的解决。
这里有一个底层的Libevent API可以为你提供这个统一接口。它提供一个统一的接口来为各种select()
替代,使用最有效的版本在任何计算机上运行。
这里还有另一个版本的异步POT13服务器实现.现在我们用libevent 2 来取代select()
.请注意,fd_sets 结构现在已经消失了:相反的,我们连接和分离事件通过一个event_base
结构,那些可能根据select()
,poll()
,epoll()
,kqueue()
等 实现的。
例子: 一个底层的libevent 实现的POT13 服务器
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>
#include <event2/event.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#define MAX_LINE 16384
void do_read(evutil_socket_t fd, short events, void *arg);
void do_write(evutil_socket_t fd, short events, void *arg);
char
rot13_char(char c)
{
/* We don't want to use isalpha here; setting the locale would change
* which characters are considered alphabetical. */
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
struct fd_state {
char buffer[MAX_LINE];
size_t buffer_used;
size_t n_written;
size_t write_upto;
struct event *read_event;
struct event *write_event;
};
struct fd_state *
alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
struct fd_state *state = malloc(sizeof(struct fd_state));
if (!state)
return NULL;
state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
if (!state->read_event) {
free(state);
return NULL;
}
state->write_event =
event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);
if (!state->write_event) {
event_free(state->read_event);
free(state);
return NULL;
}
state->buffer_used = state->n_written = state->write_upto = 0;
assert(state->write_event);
return state;
}
void
free_fd_state(struct fd_state *state)
{
event_free(state->read_event);
event_free(state->write_event);
free(state);
}
void
do_read(evutil_socket_t fd, short events, void *arg)
{
struct fd_state *state = arg;
char buf[1024];
int i;
ssize_t result;
while (1) {
assert(state->write_event);
result = recv(fd, buf, sizeof(buf), 0);
if (result <= 0)
break;
for (i=0; i < result; ++i) {
if (state->buffer_used < sizeof(state->buffer))
state->buffer[state->buffer_used++] = rot13_char(buf[i]);
if (buf[i] == '\n') {
assert(state->write_event);
event_add(state->write_event, NULL);
state->write_upto = state->buffer_used;
}
}
}
if (result == 0) {
free_fd_state(state);
} else if (result < 0) {
if (errno == EAGAIN) // XXXX use evutil macro
return;
perror("recv");
free_fd_state(state);
}
}
void
do_write(evutil_socket_t fd, short events, void *arg)
{
struct fd_state *state = arg;
while (state->n_written < state->write_upto) {
ssize_t result = send(fd, state->buffer + state->n_written,
state->write_upto - state->n_written, 0);
if (result < 0) {
if (errno == EAGAIN) // XXX use evutil macro
return;
free_fd_state(state);
return;
}
assert(result != 0);
state->n_written += result;
}
if (state->n_written == state->buffer_used)
state->n_written = state->write_upto = state->buffer_used = 1;
event_del(state->write_event);
}
void
do_accept(evutil_socket_t listener, short event, void *arg)
{
struct event_base *base = arg;
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener, (struct sockaddr*)&ss, &slen);
if (fd < 0) { // XXXX eagain??
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
} else {
struct fd_state *state;
evutil_make_socket_nonblocking(fd);
state = alloc_fd_state(base, fd);
assert(state); /*XXX err*/
assert(state->write_event);
event_add(state->read_event, NULL);
}
}
void
run(void)
{
evutil_socket_t listener;
struct sockaddr_in sin;
struct event_base *base;
struct event *listener_event;
base = event_base_new();
if (!base)
return; /*XXXerr*/
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(40713);
listener = socket(AF_INET, SOCK_STREAM, 0);
evutil_make_socket_nonblocking(listener);
#ifndef WIN32
{
int one = 1;
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
}
#endif
if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
perror("bind");
return;
}
if (listen(listener, 16)<0) {
perror("listen");
return;
}
listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
/*XXX check it */
event_add(listener_event, NULL);
event_base_dispatch(base);
}
int
main(int c, char **v)
{
setvbuf(stdout, NULL, _IONBF, 0);
run();
return 0;
}
(代码中有些地方需要注意: sockets的类型'int', 我们使用evutil_socket_t类型来替代。 调用evutil_make_socket_nonblocking 来替代fcntl(O_NONBLOCK) 设置socket非阻塞. 这些变化是我们的代码兼容Win32 的网络API)
你可能已经注意到了,我们的代码开始变的高效,也变得比较复杂了。我们不需要为每个连接管理缓冲区,每一个进程会单独分配一个堆栈。我们不需要明确的跟踪哪一个套接字是正在读还是正在写:这些隐含在我们代码里。我们不需要一个设计去跟踪多少操作已经完成:我们仅仅使用循环和栈变量。
此外,如果你在Windows上有丰富的网络编程经验,你会发现使用上面的例子不会达到很好的性能。在Windows 上,最快的异步IO方式不是使用select()这样的接口:它是使用IOCP(IO Completion Ports[IO完成端口])API.不同其他的最快的网络API,IOCP不会通知你的程序,当一个套接字已经准备去操作,而是当你的操作执行完成以后才通知你。相反的,程序告诉了Windows 网络栈,去开始一个网络操作,IOCP在程序操作完成后会通知。
幸运是 Libevent 2 的bufferevents接口决绝了这些缺陷:它让程序写起来非常的简单,提供一个接口可以高效的运行在Windows 和 Unix上。
这最后一次展示POT13服务器,通过bufferevents API
例子:一个用libevent实现的很简单的POT13服务端
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>
#include <event2/event.h>
#include <event2/buffer.h>
#include <event2/bufferevent.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#define MAX_LINE 16384
void do_read(evutil_socket_t fd, short events, void *arg);
void do_write(evutil_socket_t fd, short events, void *arg);
char
rot13_char(char c)
{
/* We don't want to use isalpha here; setting the locale would change
* which characters are considered alphabetical. */
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
void
readcb(struct bufferevent *bev, void *ctx)
{
struct evbuffer *input, *output;
char *line;
size_t n;
int i;
input = bufferevent_get_input(bev);
output = bufferevent_get_output(bev);
while ((line = evbuffer_readln(input, &n, EVBUFFER_EOL_LF))) {
for (i = 0; i < n; ++i)
line[i] = rot13_char(line[i]);
evbuffer_add(output, line, n);
evbuffer_add(output, "\n", 1);
free(line);
}
if (evbuffer_get_length(input) >= MAX_LINE) {
/* Too long; just process what there is and go on so that the buffer
* doesn't grow infinitely long. */
char buf[1024];
while (evbuffer_get_length(input)) {
int n = evbuffer_remove(input, buf, sizeof(buf));
for (i = 0; i < n; ++i)
buf[i] = rot13_char(buf[i]);
evbuffer_add(output, buf, n);
}
evbuffer_add(output, "\n", 1);
}
}
void
errorcb(struct bufferevent *bev, short error, void *ctx)
{
if (error & BEV_EVENT_EOF) {
/* connection has been closed, do any clean up here */
/* ... */
} else if (error & BEV_EVENT_ERROR) {
/* check errno to see what error occurred */
/* ... */
} else if (error & BEV_EVENT_TIMEOUT) {
/* must be a timeout event handle, handle it */
/* ... */
}
bufferevent_free(bev);
}
void
do_accept(evutil_socket_t listener, short event, void *arg)
{
struct event_base *base = arg;
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener, (struct sockaddr*)&ss, &slen);
if (fd < 0) {
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd);
} else {
struct bufferevent *bev;
evutil_make_socket_nonblocking(fd);
bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE);
bufferevent_setcb(bev, readcb, NULL, errorcb, NULL);
bufferevent_setwatermark(bev, EV_READ, 0, MAX_LINE);
bufferevent_enable(bev, EV_READ|EV_WRITE);
}
}
void
run(void)
{
evutil_socket_t listener;
struct sockaddr_in sin;
struct event_base *base;
struct event *listener_event;
base = event_base_new();
if (!base)
return; /*XXXerr*/
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(40713);
listener = socket(AF_INET, SOCK_STREAM, 0);
evutil_make_socket_nonblocking(listener);
#ifndef WIN32
{
int one = 1;
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
}
#endif
if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
perror("bind");
return;
}
if (listen(listener, 16)<0) {
perror("listen");
return;
}
listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
/*XXX check it */
event_add(listener_event, NULL);
event_base_dispatch(base);
}
int
main(int c, char **v)
{
setvbuf(stdout, NULL, _IONBF, 0);
run();
return 0;
}
在这里写一段XXX的效率,对于libevnet来说真的已经过时了。
英文原文链接,在翻译过程中限于个人水平有限,有些地方有些缺陷,还请发现后及时与我联系(mjrao@foxmail.com)或者fork 然后pull request 您的修改。 谢谢!