-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
315 lines (252 loc) · 13.6 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
# import seaborn
from IPython.display import Image
import plotly.express as px
# seaborn.set_context(context="talk")
def attention(query, key,value, mask = None,dropout = None): #query:Q, key: K, value: V
dk = key.shape[-1]
score = torch.matmul(query,key.transpose(-1,-2)) #BxLxD
scaled_score = score/math.sqrt(dk)
#Masking (optional)
#Increase score to very large negative number for tokens that are masked.
#Such large negative number will have 0 exponentiation and hence their softmax will be 0 as well.
if mask is not None:
scaled_score.masked_fill(mask==0,-1e9)
attention = F.softmax(scaled_score,dim=-1)
#Optional: Dropout
if dropout is not None:
attention = nn.Dropout(attention,dropout)
#Z = enriched embedding
Z = torch.matmul(attention,value)
return Z, attention
class MultiheadAttention(nn.Module):
def __init__(self,nheads,dmodel,dropout=0.1):
super(MultiheadAttention,self).__init__()
assert dmodel % nheads ==0
self.dk = dmodel//nheads
self.nheads = nheads
#From the theory Wq linear layer should be (dmodel x dk)
#But in implementation (we're using dmodel x dmodel) we will breakdown Wq into h heads later.
#It can we shown that calculating 'nheads' small q_i's of BxLxdk dimension individually by feeding
#key, query, value of dimension BxLxdk each is equivalent to
#calculating 1 big Wq of BxLxdmodel dimension and feeding in large X (BxLxdmodel) to get a large Q (BxLxdmodel)
#then breaking Q into 'nheads' smaller q_i's of dimension BxLxdk each.
self.Wq = nn.Linear(dmodel,dmodel)
self.Wk = nn.Linear(dmodel,dmodel)
self.Wv = nn.Linear(dmodel,dmodel)
self.Wo = nn.Linear(dmodel,dmodel)
self.dropout_value = dropout
self.dropout = nn.Dropout(p= dropout)
def forward(self,query,key,value,mask=None):
if mask is not None:
# Same mask applied to all of the nheads
mask.unsqueeze(1)
#Dim: q=k=v=x : (BxLxdmodel)
key,query,value = self.Wk(key), self.Wq(query), self.Wv(value) #k,q,v = (BxLxdmodel)
#Break k,q,v into nheads k_i's, q_i's and v_i's of dim (BxLxdk)
key = key.view(nbatches,-1,self.nheads,self.dk ) #(B,L,nheads,dk) (view -1: actual value for this dimension will be inferred so that the number of elements in the view matches the original number of elements.)
query = query.view(nbatches,-1,self.nheads,self.dk)
value = value.view(nbatches,-1,self.nheads,self.dk)
key = key.transpose(1,2) # (B,L,nheads,dk) --> (B,nheads,L,dk)
query = query.transpose(1,2)
value= value.transpose(1,2)
#Calculate self attention and enriched embedding z_i's.
#All z_i's are channeled together in 1 large z matrix below
z, self.attn = self_attention(query, key,value,mask,self.dropout_value) #z : (B,nheads,L,dk), attn: (B,nheads,L,L)
#Reshape z:(B,nheads,L,dk) -->z_concat (B,L,nheads*dk) to refelect the affect of concatenation as shown in figure
z_concat = z.transpose(1,2) #z:(B,nheads,L,dk) --> z_concat: (B,L,nheads,dk)
z_concat = z_concat.contiguous() #z_concat: (B,L,nheads,dk) --> z_concat: (1,B*L*nheads*dk)
z_concat = z_concat.view(nbatches, -1, self.nheads * self.dk) #z_concat: (1,B*L*nheads*dk) --> z_concat (B,L,nheads*dk)
#Project z_concat with linear layer (Wo) to get final enriched embedding z_enriched as shown in figure
#z_concat (B,L,nheads*dk) --> z_enriched(B,L,dmodel)
z_enriched = self.Wo(z_concat)
return z_enriched
class PositionwiseFeedForward(nn.Module):
def __init__(self,dmodel, dff, dropout=0.1):
super(PositionwiseFeedForward,self).__init__()
self.W1 = nn.Linear(dmodel,dff)
self.W2 = nn.Linear(dff,dmodel)
self.dropout = nn.Dropout(dropout)
def forward(self,x):
x = self.W1(x)
x = F.relu(x)
x = self.dropout(x)
x = self.W2(x)
return x
class LayerNorm(nn.Module):
def __init__(self,features,epsilon = 1e-9):
'features = number of features along which to normalize \
in the given input vector/matrix = dmodel'
super(LayerNorm,self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.epsilon = epsilon
def forward(x):
#calculate mean and std across the last dimension.
#this will enforce that mean and std are calculated across
#all features of a fed in example.
mean = x.mean(-1)
std = x.std(-1)
x_hat = x-mean/(std+self.epsilon) #for numerical stability, we skip sqrt in denominator
output = self.gamma*x_hat + self.beta
return output
class AddandNorm(nn.Module):
def __init__(self,features,dropout=0.2,epsilon = 1e-9):
super(AddandNorm,self).__init__()
self.layernorm = LayerNorm(features,epsilon)
self.dropout = nn.Dropout(dropout)
def forward(self,x,sublayer_output):
return self.layernorm(x+self.dropout(sublayer_output))
class PositionalEmbedding(nn.Module):
def __init__(self,dmodel,device,maxlen=10000,dropout=0.2):
super(PositionalEmbeddingitionalEmbedding,self).__init__()
self.dropout = nn.Dropout(dropout)
self.device = device
#i is a max_len dimensional vector, so that we can store a positional embedding
#value corresponding to each token in sequence (Character in SMILES)
theta_numerator = torch.arange(max_len,dtype = torch.float32)
theta_denominator = torch.pow(10000,torch.arange(0,dmodel,2,dtype=torch.float32))/dmodel
theta = theta_numerator/theta_denominator
#Create a large P tensor to hold position embedding value for each token in the sequence
self.P = torch.zeros((maxlen,dmodel))
#Update even column ids in P with sin(theta) and odd column ids with cos(theta)
self.P[:,0::2] = sin(theta)
self.P[:,1::2] = cos(theta)
def forward(self,x):
# x.shape[1] gives the length of input sequence
x = x+self.P[:,x.shape[1],:]
return self.dropout(x)
class EncoderLayer(nn.Module):
def __init__(self,mask=None,nhead=8,dmodel=512,dlinear=1024,dropout=0.2):
super(EncoderLayer,self).__init__()
self.multihead_attn = MultiheadAttention(nheads,dmodel,dropout)
self.add_norm1 = AddandNorm(dmodel,dropout)
self.pw_ffn = PointwiseFeedForward(dmodel,dlinear,dropout)
self.add_norm2 = AddandNorm(dmodel,dropout)
def forward(self,x,mask=None):
'The input to the encoderlayer is either the embedding for first encoder layer \
or representions from previous layer. We use key=query=value = input (x) to feed \
into the multiheaded attention block within encoder layer'
multihead_attn_output = self.multihead_attn(x,x,x,mask)
addnorm1_out = self.add_norm1(x,multihead_attn_output)
pwffn_outputs = self.pw_ffn(addnorm1_out)
addnorm2_out = self.add_norm2(addnorm1_out,pwffn_outputs)
return addnorm2_out
class Encoder(nn.Module):
def __init__(self,device,src_vocab,nlayers=6,nhead=8,dmodel=512,
dlinear=1024,dropout=0.2):
super(Encoder,self).__init__()
self.dmodel = dmodel
self.encoder_stack = nn.Sequential()
self.embed = nn.Embedding(len(src_vocab),dmodel)
self.pos_embed = PositionalEmbedding(dmodel,device)
for i in range(nlayers):
self.encoder_stack.add_module("Encoder_Layer_"+str(i),
EncoderLayer(nhead,dmodel,dlinear,dropout))
def forward(self,x):
embedding = self.embed(x)
pos_embedding = self.pos_embed(embedding*math.sqrt(self.dmodel))
self.attention_weights = []
for layer in self.encoder_stack:
x = layer(x,mask)
self.attention_weights.append(layer.multihead_attn.attn)
return x
def autoregression_mask(nbatch,size):
"Mask out subsequent positions."
attn_shape = (nbatch, size, size)
autoregression_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(autoregression_mask) == 0
print(autoregression_mask(1,20).shape)
plt.imshow(autoregression_mask(1,20).squeeze(0))
class DecoderLayer(nn.Module):
def __init__(self,i,nheads=8,dmodel=512,dropout=0.2,dlinear=1024):
super(DecoderLayer,self).__init__()
self.i = i #identifier to distinguish decoder layers in stacked decoder
self.multihead_attn1 = MultiheadAttention(nheads,dmodel,dropout)
self.add_norm1 = AddandNorm(dmodel,dropout)
self.multihead_en_de = MultiheadAttention(nheads,dmodel,dropout)
self.add_norm2 = AddandNorm(dmodel,dropout)
self.pw_ffn = PointwiseFeedForward(dmodel,dlinear,dropout)
self.add_norm3 = AddandNorm(dmodel,dropout)
def forward(self,x,encoder_output,encoder_mask,decoder_state,time_step=0):
nbatch = x.shape[0]
if self.training:
decoder_mask = autoregression_mask(nbatch,self.dmodel) #(B,L,L)
else:
decoder_mask = None
if self.training:
#when training, decoder has access to the entire output sequence
#hence can take entire x (target sequence) as input. Obviously proper masking
#of target sequence is needed to stop the decoder from seeing future tokens
mulithead_attn1_output = self.multihead_attn1(x,x,x,decoder_mask)
else:
#when validating, decoder hasn't produced the word beyond the time step it is
#processing. Decoding happens one word at a time during validation.
#at t=0, input to multihead_attn1
#q,k,v = <bos> token,
#at t=1 and beyond, input to ith decoder block (from prev. decoder side) is whatever
#was predicted at prev. time step and the ith decoder block's state at t-1 timestep.
#See figure above
if time_step ==0:
mulithead_attn1_output = self.multihead_attn1(x,x,x,decoder_mask)
#update decoder state with current time step's state
decoder_state[self.i]= x
else:
decoder_query = x
decoder_key_value = torch.cat((decoder_state[self.i],x),dim=1)
mulithead_attn1_output = self.multihead_attn1(x,decoder_key_value,
decoder_key_value,decoder_mask)
#update decoder state with current time step's state
decoder_state[self.i]= decoder_key_value
addnorm1_out = self.add_norm1(x,mulithead_attn1_output)
key,value,query = encoder_output,encoder_output,addnorm1_out
multihead_en_de_output = self.multihead_en_de(query,key,value,encoder_mask)
addnorm2_out = self.add_norm2(addnorm1_out,multihead_en_de_output)
pwffn_outputs = self.pw_ffn(addnorm2_out)
addnorm3_out = self.add_norm2(addnorm2_out,pwffn_outputs)
return addnorm3_out,decoder_state
class Decoder(nn.Module):
def __init__(self,device,tgt_vocab,nlayers=6,nhead=8,dmodel=512,
dlinear=1024,dropout=0.2):
super(Decoder,self).__init__()
self.dmodel = dmodel
self.nlayers = nlayers
self.embed = nn.Embedding(len(tgt_vocab),dmodel)
self.pos_embed = PositionalEmbedding(dmodel,device)
self.decoder_stack = nn.Sequential()
for i in range(nlayers):
self.decoder_stack.add_module("Decoder_Layer_"+str(i),
DecoderLayer(i,nhead,dmodel,dropout,dlinear))
self.dense = nn.Linear(dmodel,len(tgt_vocab))
def forward(self,x,encoder_output,encoder_mask,decoder_state,time_step=0):
embedding = self.embed(x)
pos_embedding = self.pos_embed(embedding*math.sqrt(self.dmodel))
#To save attention weights from both multiheaded attention layers
#for later visualization
self.att_wts_de,self.att_wts_en_de = [],[]
for layer in self.encoder_stack:
x,decoder_state = layer(x,encoder_output,encoder_mask,decoder_state,time_step)
self.att_wts_de.append(layer.multihead_attn1.attn)
self.att_wts_en_de.append(layer.multihead_en_de.attn)
return dense(x),decoder_state
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Transformer(nn.Module):
def __init__(self,encoder,decoder):
super(Transformer,self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self,src_input,src_mask,tgt_input,decoder_state,time_step):
encoder_output = encoder(src_input)
decoder_output,decoder_state = decoder(tgt_input,encoder_output,
encoder_mask,decoder_state,time_step)
encoder = Encoder(device,src_vocab,nlayers=6,nhead=8,dmodel=512,
dlinear=1024,dropout=0.2)
decoder = Decoder(device,tgt_vocab,nlayers=6,nhead=8,dmodel=512,
dlinear=1024,dropout=0.2)
trfm_network = Transformer(encoder,decoder).to(device)