-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine_finetune.py
237 lines (209 loc) · 8.51 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# --------------------------------------------------------
# References:
# SatMAE: https://github.com/sustainlab-group/SatMAE
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import sys
from typing import Iterable, Optional
import torch
import torch.nn.functional as F
import util.lr_sched as lr_sched
import util.misc as misc
import wandb
from timm.data import Mixup
from timm.utils import accuracy
import numpy as np
from sklearn.metrics import f1_score, jaccard_score
def train_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
max_norm: float = 0,
mixup_fn: Optional[Mixup] = None,
log_writer=None,
args=None,
ignore_index=-9999,
):
if args is None:
raise Exception("args is None")
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = f"Epoch: [{epoch}]"
print_freq = 20
accum_iter = args.accum_iter # type: ignore
optimizer.zero_grad()
if log_writer is not None:
print(f"log_dir: {log_writer.log_dir}")
for data_iter_step, (samples, targets) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(
optimizer, data_iter_step / len(data_loader) + epoch, args
)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
# print(f"train_one_epoch: {samples.shape}, {targets.shape}")
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
# print(f"train_one_epoch after mixup: {samples.shape}, {targets.shape}")
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
raise ValueError(f"Loss is {loss_value}, stopping training")
loss /= accum_iter
loss_scaler(
loss,
optimizer,
clip_grad=max_norm,
parameters=model.parameters(),
create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0,
)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.0
max_lr = 0.0
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
"""We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar("loss", loss_value_reduce, epoch_1000x)
log_writer.add_scalar("lr", max_lr, epoch_1000x)
if args.local_rank == 0 and args.wandb_project is not None:
try:
wandb.log(
{
"train_loss_step": loss_value_reduce,
"train_lr_step": max_lr,
"epoch_1000x": epoch_1000x,
}
)
except ValueError:
pass
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, args=None, ignore_index=-9999):
criterion = torch.nn.CrossEntropyLoss()
if args is None:
raise Exception("args is None")
# criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = "Test:"
true_labels = []
predict = []
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
target_one_hot = torch.zeros(
(target.size(0), model.num_classes), device=target.device
)
target_one_hot.scatter_(1, target.unsqueeze(1).long(), 1)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
if int(args.nb_classes) < 4:
acc1, acc5 = accuracy(output, target, topk=(1, 5))
else:
acc1 = accuracy(output, target, topk=(1,))
if isinstance(acc1, list):
acc1 = acc1[0]
acc5 = None
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
if not args.use_psa:
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
if acc5 is not None:
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
true_labels.append(target_one_hot.cpu().numpy()) # store true labels
predict.append(torch.argmax(output, dim=-1).cpu().numpy())
y = np.argmax(np.concatenate(true_labels), axis=1).astype(int)
predict = np.concatenate(predict).astype(int)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
if not args.use_psa:
macro_f1_score = f1_score(y, predict, average="macro")
micro_f1_score = f1_score(y, predict, average="micro")
metric_logger.add_meter("macro_f1", misc.AverageMeter())
metric_logger.add_meter("micro_f1", misc.AverageMeter())
metric_logger.update(macro_f1=macro_f1_score, micro_f1=micro_f1_score)
# Log metrics to wandb
if args.local_rank == 0 and args.wandb_project is not None:
try:
if int(args.nb_classes) < 4:
wandb.log(
{
"val_acc1": metric_logger.acc1.global_avg,
"val_acc5": metric_logger.acc5.global_avg,
"val_macro_f1": macro_f1_score,
"val_micro_f1": micro_f1_score,
}
)
else:
wandb.log(
{
"val_acc1": metric_logger.acc1.global_avg,
"val_macro_f1": macro_f1_score,
"val_micro_f1": micro_f1_score,
}
)
except ValueError:
pass
classwise_f1_score = f1_score(y, predict, average=None)
if int(args.nb_classes) < 4:
print(
"* Acc@1 {top1.global_avg:.3f}\n* Acc@5 {top5.global_avg:.3f}\n*"
" CE-loss {losses.global_avg:.3f}".format(
top1=metric_logger.acc1,
top5=metric_logger.acc5,
losses=metric_logger.loss,
)
)
else:
print(
"* Acc@1 {top1.global_avg:.3f}\n* CE-loss {losses.global_avg:.3f}"
.format(top1=metric_logger.acc1, losses=metric_logger.loss)
)
print(
f"* Macro F1 score: {macro_f1_score:.3f}\n",
f"* Micro F1 score: {micro_f1_score:.3f}\n",
f"* Classwise F1 score: {classwise_f1_score}",
)
elif args.use_psa:
# Calculate per-class IoU (Jaccard score)
iou = jaccard_score(y, predict, average=None)
# Calculate mean IoU
miou = np.mean(iou)
# Log the mIoU
metric_logger.add_meter("mIoU", misc.AverageMeter())
metric_logger.update(mIoU=miou)
print(f"* mIoU: {miou:.3f}\n")
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}