-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquery.py
231 lines (188 loc) · 7.96 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# queries
import networkx as nx
import numpy as np
import collections
import random
import networkx as nx
from utils import *
from sklearn.isotonic import IsotonicRegression
import scipy.sparse as sparse
def pagerank(bgt, step_size, partial_net):
# pagerank is obtained when setting nan as 0.
cur_A = partial_net['A'].copy()
A = np.zeros_like(partial_net['A'])
n = A.shape[0]
known_eid = partial_net['known_eid']
known_e = np.array(eid_to_e(n, known_eid))
A[known_e[:, 0], known_e[:, 1]] = cur_A[known_e[:, 0], known_e[:, 1]]
A[known_e[:, 1], known_e[:, 0]] = cur_A[known_e[:, 0], known_e[:, 1]]
G = nx.from_numpy_matrix(np.matrix(A))
pg = nx.pagerank(G, alpha=0.85)
utility = []
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
for i in range(len(pool_eid)):
l_e = pool_e[i, :]
utility.append(pg[l_e[0]]+pg[l_e[1]])
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=True)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return utility, pool_eid[inds]
def degree_sum(bgt, step_size, partial_net):
cur_A = partial_net['A'].copy()
A = np.zeros_like(partial_net['A'])
n = A.shape[0]
known_eid = partial_net['known_eid']
known_e = eid_to_e(n, known_eid)
A[known_e[:, 0], known_e[:, 1]] = cur_A[known_e[:, 0], known_e[:, 1]]
A[known_e[:, 1], known_e[:, 0]] = cur_A[known_e[:, 0], known_e[:, 1]]
degrees = A.sum(axis=0)
utility = []
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
for i in range(len(pool_eid)):
l_e = pool_e[i]
utility.append(degrees[l_e[0]] + degrees[l_e[1]])
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=True)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return utility, pool_eid[inds]
def probability(bgt, step_size, partial_net, post_P):
n = partial_net['A'].shape[0]
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
utility = post_P[pool_e[:, 0], pool_e[:, 1]]
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=True)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return utility, pool_eid[inds]
def distance(bgt, step_size, partial_net, X):
n = partial_net['A'].shape[0]
utility = []
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
for i in range(len(pool_eid)):
l_e = pool_e[i]
diff = X[l_e[0], :] - X[l_e[1], :]
utility.append(np.linalg.norm(diff))
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=False)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return utility, pool_eid[inds]
def entropy(bgt, step_size, partial_net, post_P):
A = partial_net['A']
n = A.shape[0]
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
Ps = post_P[pool_e[:, 0], pool_e[:, 1]]
P_te = Ps
utility = -P_te*np.log(P_te) - (1-P_te)*np.log(1-P_te)
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=True)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return utility, pool_eid[inds]
def fisher_x_ii_k(partial_net, post_P, X, ne_params, i):
# sum over only the known neighbours of i
d = ne_params['d']
gamma = (1/ne_params['s1']**2 - 1/ne_params['s2']**2)
known_i = partial_net['known_dic'][i]
post_P = post_P[i, known_i]
p = post_P*(1 - post_P)
tmp = (p*(X[i, :] - X[known_i, :]).T).dot(X[i, :] - X[known_i, :])
FI_ii = gamma**2*tmp + np.diag(np.ones(d)*np.finfo(float).eps)
return FI_ii
def d_optimality(bgt, step_size, partial_net, post_P, X, ne_params):
A = partial_net['A']
gamma = (1/ne_params['s1']**2 - 1/ne_params['s2']**2)
n = A.shape[0]
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
fishers = [fisher_x_ii_k(partial_net, post_P, X, ne_params, idx) for idx in range(n)]
utility = []
for eid in range(len(pool_eid)):
i, j = pool_e[eid]
diff_ij = X[i, :] - X[j, :]
P_ij = post_P[i, j]
I_ij_X = fishers[i] + fishers[j]
tmp = diff_ij.dot(np.linalg.inv(I_ij_X)).dot(diff_ij.T)
res_eid = 2*gamma**2*P_ij*(1-P_ij)*tmp*np.linalg.det(I_ij_X)
utility.append(res_eid)
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=True)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return np.array(utility), pool_eid[inds]
def v_optimality_k(bgt, step_size, partial_net, post_P, X, ne_params):
A = partial_net['A']
gamma = (1/ne_params['s1']**2 - 1/ne_params['s2']**2)
n = A.shape[0]
pool_eid = partial_net['pool_eid']
pool_e = eid_to_e(n, pool_eid)
fishers = [fisher_x_ii_k(partial_net, post_P, X, ne_params, idx) for idx in range(n)]
l_target_e = partial_net['target_e'].tolist()
target_dict = collections.defaultdict(list)
for u, v in l_target_e:
target_dict[u].append(v)
target_dict[v].append(u)
Ps = post_P[pool_e[:, 0], pool_e[:, 1]]
Ps = Ps*(1-Ps)
djj_i = [(X[i, :] - X[j, :]).dot(np.linalg.inv(fishers[i])).dot(X[i, :] - X[j, :]) for i, j in pool_e]
dii_j = [(X[i, :] - X[j, :]).dot(np.linalg.inv(fishers[j])).dot(X[i, :] - X[j, :]) for i, j in pool_e]
deno_i = 1/(1+gamma**2*Ps*djj_i)
deno_j = 1/(1+gamma**2*Ps*dii_j)
utility = []
for eid in range(len(pool_eid)):
i, j = pool_e[eid]
X_diff_ij = X[i, :] - X[j, :]
Pis = post_P[i, target_dict[i]]
dkj_i = (X[i, :] - X[target_dict[i], :]).dot(np.linalg.inv(fishers[i])).dot(X_diff_ij.T)
score_i = ((Pis*(1-Pis))**2*dkj_i**2*deno_i[eid])
Pjs = post_P[j, target_dict[j]]
dli_j = (X[j, :] - X[target_dict[j], :]).dot(np.linalg.inv(fishers[j])).dot(-X_diff_ij.T)
score_j = ((Pjs*(1-Pjs))**2*dli_j**2*deno_j[eid])
res_eid = gamma**4*Ps[eid]*(np.sum(score_i) + np.sum(score_j))
utility.append(res_eid)
sorted_e_ind = sorted(range(len(utility)), key=lambda k: utility[k], reverse=True)
if bgt >= step_size:
inds = sorted_e_ind[:step_size]
else:
inds = sorted_e_ind[:min(bgt, len(pool_eid))]
return np.array(utility), pool_eid[inds]
def get_query(partial_net, post_P, X, step_size, bgt, ne_params, strategy):
print('pool_eid length left', len(partial_net['pool_eid']))
if strategy == 'random_1' or strategy == 'random_2' or strategy == 'random_3':
pool_eid = partial_net['pool_eid']
set_pool = set(pool_eid)
if bgt >= step_size:
query = np.array(random.sample(list(set_pool), step_size))
else:
query = np.array(random.sample(list(set_pool), min(bgt, len(pool_eid))))
else:
if strategy == 'pagerank':
utility, query = pagerank(bgt, step_size, partial_net)
elif strategy == 'max_degree_sum':
utility, query = degree_sum(bgt, step_size, partial_net)
elif strategy == 'max_probability':
utility, query = probability(bgt, step_size, partial_net, post_P)
elif strategy == 'min_distance':
utility, query = distance(bgt, step_size, partial_net, X)
elif strategy == 'max_entropy':
utility, query = entropy(bgt, step_size, partial_net, post_P)
elif strategy == 'd_optimality':
utility, query = d_optimality(bgt, step_size, partial_net, post_P, X, ne_params)
elif strategy == 'v_optimality':
utility, query = v_optimality_k(bgt, step_size, partial_net, post_P, X, ne_params)
else:
query = []
return query