-
Notifications
You must be signed in to change notification settings - Fork 22
/
cnn_uci.py
195 lines (124 loc) · 5.72 KB
/
cnn_uci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import math
from sklearn.metrics import classification_report
from sklearn.preprocessing import normalize
import tensorflow as tf
## CNN parameters
segment_size = 128
num_input_channels = 6
num_training_iterations = 100000
batch_size = 200
l2_reg = 5e-4
learning_rate = 5e-4
dropout_rate = 0.05
eval_iter = 1000
n_filters = 196
filters_size = 16
n_hidden = 1024
n_classes = 6
def weight_variable(shape, stddev):
initial = tf.truncated_normal(shape, stddev=stddev)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial)
def conv1d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_1x4(x):
return tf.nn.max_pool(x, ksize=[1, 1, 4, 1], strides=[1, 1, 4, 1], padding='SAME')
def norm(x):
temp = x.T - np.mean(x.T, axis = 0)
#temp = temp / np.std(temp, axis = 0)
return temp.T
## Loading the dataset
print('Loading UCI dataset...')
# Reading training data
fa = open("data_processing/uci_data/all_data.csv")
ff = open("data_processing/uci_data/features.csv")
data_train = np.loadtxt(fname = fa, delimiter = ',')
features = np.loadtxt(fname = ff, delimiter = ',')
fa.close(); ff.close()
# Reading test data
fa = open("data_processing/uci_data/all_data_test.csv")
ff = open("data_processing/uci_data/test_features.csv")
data_test = np.loadtxt(fname = fa, delimiter = ',')
features_test = np.loadtxt(fname = ff, delimiter = ',')
fa.close(); ff.close()
# Reading training labels
fa = open("data_processing/uci_data/answers.csv")
labels_train = np.loadtxt(fname = fa, delimiter = ',')
fa.close()
# Reading test labels
fa = open("data_processing/uci_data/answers_test.csv")
labels_test = np.loadtxt(fname = fa, delimiter = ',')
fa.close()
features = features - np.mean(features, axis = 0)
features = features / np.std(features, axis = 0)
features_test = features_test - np.mean(features_test, axis = 0)
features_test = features_test / np.std(features_test, axis = 0)
for i in range(num_input_channels):
x = data_train[:, i * segment_size : (i + 1) * segment_size]
data_train[:, i * segment_size : (i + 1) * segment_size] = norm(x)
x = data_test[:, i * segment_size : (i + 1) * segment_size]
data_test[:, i * segment_size : (i + 1) * segment_size] = norm(x)
train_size = data_train.shape[0]
test_size = data_test.shape[0]
num_features = features.shape[1]
data_test = np.reshape(data_test, [data_test.shape[0], segment_size * num_input_channels])
labels_test = np.reshape(labels_test, [labels_test.shape[0], n_classes])
features_test = np.reshape(features_test, [features_test.shape[0], num_features])
labels_test_unary = np.argmax(labels_test, axis=1)
print("Dataset was uploaded\n")
## creating CNN
print("Creating CNN architecture\n")
# Convolutional and Pooling layers
W_conv1 = weight_variable([1, filters_size, num_input_channels, n_filters], stddev=0.01)
b_conv1 = bias_variable([n_filters])
x = tf.placeholder(tf.float32, [None, segment_size * num_input_channels])
x_image = tf.reshape(x, [-1, 1, segment_size, num_input_channels])
h_conv1 = tf.nn.relu(conv1d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_1x4(h_conv1)
# Augmenting data with statistical features
flat_size = int(math.ceil(float(segment_size)/4)) * n_filters
h_feat = tf.placeholder(tf.float32, [None, num_features])
h_flat = tf.reshape(h_pool1, [-1, flat_size])
h_hidden = tf.concat(1, [h_flat, h_feat])
flat_size += num_features
# Fully connected layer with Dropout
W_fc1 = weight_variable([flat_size, n_hidden], stddev=0.01)
b_fc1 = bias_variable([n_hidden])
h_fc1 = tf.nn.relu(tf.matmul(h_hidden, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Softmax layer
W_softmax = weight_variable([n_hidden, n_classes], stddev=0.01)
b_softmax = bias_variable([n_classes])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_softmax) + b_softmax)
y_ = tf.placeholder(tf.float32, [None, n_classes])
# Cross entropy loss function and L2 regularization term
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv, 1e-10, 1.0)))
cross_entropy += l2_reg * (tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1))
# Training step
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Run Tensorflow session
sess = tf.Session()
sess.run(tf.initialize_all_variables())
# Train CNN
print("Training CNN... ")
max_accuracy = 0.0
for i in range(num_training_iterations):
idx_train = np.random.randint(0, train_size, batch_size)
xt = np.reshape(data_train[idx_train], [batch_size, segment_size * num_input_channels])
yt = np.reshape(labels_train[idx_train], [batch_size, n_classes])
ft = np.reshape(features[idx_train], [batch_size, num_features])
sess.run(train_step, feed_dict={x: xt, y_: yt, h_feat: ft, keep_prob: dropout_rate})
if i % eval_iter == 0:
train_accuracy, train_entropy, y_pred = sess.run([accuracy, cross_entropy, y_conv],
feed_dict={ x : data_test, y_: labels_test, h_feat: features_test, keep_prob: 1})
print("step %d, entropy %g" % (i, train_entropy))
print("step %d, max accuracy %g, accuracy %g" % (i, max_accuracy, train_accuracy))
print(classification_report(labels_test_unary, np.argmax(y_pred, axis=1), digits=4))
if max_accuracy < train_accuracy:
max_accuracy = train_accuracy