-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplanning_step.py
49 lines (37 loc) · 1.31 KB
/
planning_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def features_to_atoms(feature_vector):
return list(enumerate(feature_vector))
# Define how we will extract features
def gridenvs_BASIC_features(env, node):
node.data["features"] = features_to_atoms(env.unwrapped.get_colors().flatten())
if __name__ == "__main__":
import gym
import numpy as np
from rollout_iw import RolloutIW
from tree import TreeActor
import gridenvs.examples # register GE environments to gym
# HYPERPARAMETERS
seed = 0
env_id = "GE_PathKeyDoor-v0"
max_tree_nodes = 20
# Set random seed
np.random.seed(seed)
# Instead of env.step() and env.reset(), we'll use TreeActor helper class, which creates a tree and adds nodes to it
env = gym.make(env_id)
actor = TreeActor(env, observe_fn=gridenvs_BASIC_features)
planner = RolloutIW(branching_factor=env.action_space.n)
tree = actor.reset()
planner.plan(tree=tree,
successor_fn=actor.generate_successor,
stop_condition_fn=lambda: len(tree) == max_tree_nodes)
# Print tree function
n = 0
def str_node_data(data):
global n
s = str(n) + "-> "
n+=1
if "r" in data.keys():
s += "r: " + str(data["r"])
else:
s += "ROOT"
return s
print(actor.tree.str_tree(str_node_data))