Download following datasets:
Download COCO2014 train/val images and annotations:
wget http://images.cocodataset.org/zips/train2014.zip wget http://images.cocodataset.org/zips/val2014.zip wget http://images.cocodataset.org/annotations/annotations_trainval2014.zipDownload COCO2014 train/val annotations from this Google Drive: train2014.zip, val2014.zip. (and locate both train2014/ and val2014/ under annotations/ directory). Download data splits.
Download PASCAL VOC2012 devkit (train/val data):
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tarDownload PASCAL VOC2012 SDS extended mask annotations from this Google Drive. Download data splits.
Download COCO2017 train/val images:
wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zipDownload LVIS-92i extended mask annotations from our Google Drive: lvis.zip.
Create a directory 'datasets' for the above datasets and appropriately place each dataset to have following directory structure:
datasets/
├── fss/
├── COCO2014/
│ ├── annotations/
│ │ ├── train2014/
│ │ └── val2014/
│ ├── train2014/
│ ├── val2014/
│ └── splits
│ ├── trn/
│ └── val/
├── VOC2012/
│ ├── Annotations/
│ ├── ImageSets/
│ ├── JPEGImages/
│ ├── SegmentationClass/
│ ├── SegmentationClassAug/
│ ├── SegmentationObject/
│ └── splits
│ ├── trn/
│ └── val/
├── LVIS/
│ ├── coco/
│ │ ├── train2017/
│ │ └── val2017/
│ ├── lvis_train.pkl
│ └── lvis_val.pkl
CUDA_VISIBLE_DEVICES=0 python tools/eval_fss.py \
--benchmark coco \
--fold 0 \
--nshot 1 \
--sine-weights /path/to/pt_sine_model/pytorch_model.bin \
--log-root /path/to/fss/coco/1shot/fold0