forked from davide-coccomini/MINTIME-Multi-Identity-size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
186 lines (149 loc) · 6.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Utility functions for training process
import numpy as np
import torch
from matplotlib import pyplot as plt
from random import random
from scipy.special import softmax
from einops import rearrange
from statistics import mean
import cv2
import math
from typing import Dict
import json
import urllib
from torchvision.transforms import Compose, Lambda
from torchvision.transforms._transforms_video import (
CenterCropVideo,
NormalizeVideo,
)
from pytorchvideo.data.encoded_video import EncodedVideo
from pytorchvideo.transforms import (
ApplyTransformToKey,
ShortSideScale,
UniformTemporalSubsample,
UniformCropVideo
)
PLOTS_NAMES = ["space", "time", "combined"]
# Convert the preds into final video-level prediction
def check_correct(preds, labels, multiclass_labels = None, multiclass_errors = None, videos_ids = None):
preds = [np.asarray(torch.sigmoid(pred).detach().numpy()).round() for pred in preds]
correct = 0
positive_class = 0
negative_class = 0
videos_errors = []
for i in range(len(labels)):
pred = int(preds[i])
if labels[i] == pred:
correct += 1
if labels[i] != pred:
if multiclass_labels is not None and not math.isnan(multiclass_labels[i]):
multiclass_errors[multiclass_labels[i].item()][0] += 1
if videos_ids != None:
videos_errors.append(videos_ids[i])
if pred == 1:
positive_class += 1
else:
negative_class += 1
if multiclass_errors != None:
return correct, positive_class, negative_class, multiclass_errors, videos_errors
else:
return correct, positive_class, negative_class
def unix_time_millis(dt):
return dt.total_seconds() * 1000.0
def multiple_lists_mean(a):
return sum(a) / len(a)
# Aggregate space and time attention
def aggregate_attentions(attentions, heads, num_frames, frames_per_identity, scale_factor = 50000):
# Collapse attentions heads for each attention separated
aggregated_attentions = []
for attention in attentions:
attention = attention.squeeze(1)
attention = rearrange(attention, '(b h) t -> b h t', h = heads)
tokens_means = [torch.max(attention[:, :, i]).item() for i in range(attention.shape[2])]
aggregated_attentions.append(tokens_means)
# Combined space and time attention
tokens_means_combined = list(np.sum(np.asarray(aggregated_attentions), axis=0))
aggregated_attentions.append(tokens_means_combined)
# Softmax all the attentions
for i in range(len(aggregated_attentions)):
aggregated_attentions[i] = np.array_split(np.asarray(aggregated_attentions[i]), num_frames)
aggregated_attentions[i] = softmax([mean(values)*scale_factor for values in aggregated_attentions[i]])
identity_attentions = []
for index, identity_frames in enumerate(frames_per_identity):
if index == 0:
identity_attention = sum(aggregated_attentions[-1][:identity_frames-1])
else:
previous_identity_frames = frames_per_identity[index-1]
identity_attention = sum(aggregated_attentions[-1][previous_identity_frames-1:identity_frames-1])
identity_attentions.append(identity_attention)
return aggregated_attentions, identity_attentions
# Visualize the attention
def save_attention_plots(aggregated_attentions, identity_names, frames_per_identity, num_frames, video_id):
colors = np.random.rand(len(frames_per_identity), 4)
for index, tokens_means in enumerate(aggregated_attentions):
plt.bar([i+1 for i in range(num_frames)], tokens_means)
for i in range(len(frames_per_identity)):
plt.vlines(frames_per_identity[i], ymin=min(tokens_means), ymax=max(tokens_means), colors=colors[i], label = str(identity_names[i]))
plt.legend()
plt.savefig("outputs/tokens/" + video_id + "_" + PLOTS_NAMES[index] + ".jpg")
plt.clf()
def draw_border(img, pt1, pt2, color, thickness, r, d):
x1,y1 = pt1
x2,y2 = pt2
# Top left
cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)
cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)
cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)
# Top right
cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)
cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)
cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)
# Bottom left
cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)
cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)
cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)
# Bottom right
cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)
cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)
cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)
return img
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
SLOWFAST_ALPHA = 4
class PackPathway(torch.nn.Module):
"""
Transform for converting video frames as a list of tensors.
"""
def __init__(self):
super().__init__()
def forward(self, frames: torch.Tensor):
fast_pathway = frames
# Perform temporal sampling from the fast pathway.
slow_pathway = torch.index_select(
frames,
1,
torch.linspace(
0, frames.shape[1] - 1, frames.shape[1] // SLOWFAST_ALPHA
).long(),
)
frame_list = [slow_pathway, fast_pathway]
return frame_list
def slowfast_input_transform(videos, crop_size = 256, side_size = 256, num_frames = 32, sampling_rate = 2, frames_per_second = 30, mean = [0.45, 0.45, 0.45], std = [0.225, 0.225, 0.225]):
transform=Compose(
[
UniformTemporalSubsample(num_frames),
Lambda(lambda x: x/255.0),
NormalizeVideo(mean, std),
ShortSideScale(
size=side_size
),
CenterCropVideo(crop_size),
PackPathway()
]
)
transformed_videos = [[],[]]
for video in videos:
output = transform(video)
transformed_videos[0].append(output[0])
transformed_videos[1].append(output[1])
return transformed_videos