-
Notifications
You must be signed in to change notification settings - Fork 35
/
test.py
executable file
·224 lines (195 loc) · 9.96 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
This code is modified based on Jin-Hwa Kim's repository (Bilinear Attention Networks - https://github.com/jnhwkim/ban-vqa) by Xuan B. Nguyen
"""
import argparse
import torch
from torch.utils.data import DataLoader
import dataset_RAD
import base_model
import utils
import pandas as pd
import os
import json
answer_types = ['CLOSED', 'OPEN', 'ALL']
quesntion_types = ['COUNT', 'COLOR', 'ORGAN', 'PRES', 'PLANE', 'MODALITY', 'POS', 'ABN', 'SIZE', 'OTHER', 'ATTRIB']
def compute_score_with_logits(logits, labels):
logits = torch.max(logits, 1)[1].data # argmax
one_hots = torch.zeros(*labels.size()).to(logits.device)
one_hots.scatter_(1, logits.view(-1, 1), 1)
scores = (one_hots * labels)
return scores
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--ensemble', type=bool, default=False,
help='ensemble flag. If True, generate a logit file which is used in the ensemble part')
# MODIFIABLE MEVF HYPER-PARAMETERS--------------------------------------------------------------------------------
# Model loading/saving
parser.add_argument('--split', type=str, default='test')
parser.add_argument('--input', type=str, default='saved_models/SAN_MEVF',
help='input file directory for loading a model')
parser.add_argument('--output', type=str, default='results',
help='output file directory for saving VQA answer prediction file')
# Utilities
parser.add_argument('--epoch', type=int, default=19,
help='the best epoch')
# Gradient accumulation
parser.add_argument('--batch_size', type=int, default=1,
help='batch size')
# Choices of Attention models
parser.add_argument('--model', type=str, default='SAN', choices=['BAN', 'SAN'],
help='the model we use')
# Choices of RNN models
parser.add_argument('--rnn', type=str, default='LSTM', choices=['LSTM', 'GRU'],
help='the RNN we use')
# BAN - Bilinear Attention Networks
parser.add_argument('--gamma', type=int, default=2,
help='glimpse in Bilinear Attention Networks')
parser.add_argument('--use_counter', action='store_true', default=False,
help='use counter module')
# SAN - Stacked Attention Networks
parser.add_argument('--num_stacks', default=2, type=int,
help='num of stacks in Stack Attention Networks')
# Utilities - gpu
parser.add_argument('--gpu', type=int, default=0,
help='specify index of GPU using for training, to use CPU: -1')
# Question embedding
parser.add_argument('--op', type=str, default='c',
help='concatenated 600-D word embedding')
# Joint representation C dimension
parser.add_argument('--num_hid', type=int, default=1024,
help='dim of joint semantic features')
# Activation function + dropout for classification module
parser.add_argument('--activation', type=str, default='relu', choices=['relu'],
help='the activation to use for final classifier')
parser.add_argument('--dropout', default=0.5, type=float, metavar='dropout',
help='dropout of rate of final classifier')
# Train with RAD
parser.add_argument('--use_RAD', action='store_true', default=False,
help='Using TDIUC dataset to train')
parser.add_argument('--RAD_dir', type=str,
help='RAD dir')
# Optimization hyper-parameters
parser.add_argument('--eps_cnn', default=1e-5, type=float, metavar='eps_cnn',
help='eps - batch norm for cnn')
parser.add_argument('--momentum_cnn', default=0.05, type=float, metavar='momentum_cnn',
help='momentum - batch norm for cnn')
# input visual feature dimension
parser.add_argument('--feat_dim', default=64, type=int,
help='visual feature dim')
# Auto-encoder component hyper-parameters
parser.add_argument('--autoencoder', action='store_true', default=False,
help='End to end model?')
parser.add_argument('--ae_model_path', type=str, default='pretrained_ae.pth',
help='the maml_model_path we use')
# MAML component hyper-parameters
parser.add_argument('--maml', action='store_true', default=False,
help='End to end model?')
parser.add_argument('--maml_model_path', type=str, default='pretrained_maml.weights',
help='the maml_model_path we use')
# Return args
args = parser.parse_args()
return args
# Load questions
def get_question(q, dataloader):
q = q.squeeze(0)
str = []
dictionary = dataloader.dataset.dictionary
for i in range(q.size(0)):
str.append(dictionary.idx2word[q[i]] if q[i] < len(dictionary.idx2word) else '_')
return ' '.join(str)
# Load answers
def get_answer(p, dataloader):
_m, idx = p.max(1)
return dataloader.dataset.label2ans[idx.item()]
# Logit computation (for train, test or evaluate)
def get_result(model, dataloader, device, args):
keys = ['count', 'real', 'true', 'real_percent', 'score', 'score_percent']
question_types_result = dict((i, dict((j, dict((k, 0.0) for k in keys)) for j in quesntion_types)) for i in answer_types)
result = dict((i, dict((j, 0.0) for j in keys)) for i in answer_types)
with torch.no_grad():
for v, q, a, ans_type, q_types, p_type in iter(dataloader):
if p_type[0] != "freeform":
continue
if args.maml:
v[0] = v[0].reshape(v[0].shape[0], 84, 84).unsqueeze(1)
if args.autoencoder:
v[1] = v[1].reshape(v[1].shape[0], 128, 128).unsqueeze(1)
v[0] = v[0].to(device)
v[1] = v[1].to(device)
q = q.to(device)
a = a.to(device)
# inference and get logit
if args.autoencoder:
features, _ = model(v, q)
else:
features = model(v, q)
preds = model.classifier(features)
final_preds = preds
batch_score = compute_score_with_logits(final_preds, a.data).sum()
# Compute accuracy for each type answer
result[ans_type[0]]['count'] += 1.0
result[ans_type[0]]['true'] += float(batch_score)
result[ans_type[0]]['real'] += float(a.sum())
result['ALL']['count'] += 1.0
result['ALL']['true'] += float(batch_score)
result['ALL']['real'] += float(a.sum())
q_types = q_types[0].split(", ")
for i in q_types:
question_types_result[ans_type[0]][i]['count'] += 1.0
question_types_result[ans_type[0]][i]['true'] += float(batch_score)
question_types_result[ans_type[0]][i]['real'] += float(a.sum())
question_types_result['ALL'][i]['count'] += 1.0
question_types_result['ALL'][i]['true'] += float(batch_score)
question_types_result['ALL'][i]['real'] += float(a.sum())
for i in answer_types:
result[i]['score'] = result[i]['true']/result[i]['count']
result[i]['score_percent'] = round(result[i]['score']*100,1)
for j in quesntion_types:
if question_types_result[i][j]['count'] != 0.0:
question_types_result[i][j]['score'] = question_types_result[i][j]['true'] / question_types_result[i][j]['count']
question_types_result[i][j]['score_percent'] = round(question_types_result[i][j]['score']*100, 1)
if question_types_result[i][j]['real'] != 0.0:
question_types_result[i][j]['real_percent'] = round(question_types_result[i][j]['real']/question_types_result[i][j]['count']*100.0, 1)
return result, question_types_result
# Test phase
if __name__ == '__main__':
args = parse_args()
print(args)
torch.backends.cudnn.benchmark = True
args.device = torch.device("cuda:" + str(args.gpu) if args.gpu >= 0 else "cpu")
# Check if evaluating on TDIUC dataset or VQA dataset
if args.use_RAD:
dictionary = dataset_RAD.Dictionary.load_from_file(os.path.join(args.RAD_dir , 'dictionary.pkl'))
eval_dset = dataset_RAD.VQAFeatureDataset(args.split, args, dictionary)
batch_size = args.batch_size
constructor = 'build_%s' % args.model
model = getattr(base_model, constructor)(eval_dset, args)
print(model)
eval_loader = DataLoader(eval_dset, batch_size, shuffle=False, num_workers=0, pin_memory=True, collate_fn=utils.trim_collate)
def save_questiontype_results(outfile_path, quesntion_types_result):
for i in quesntion_types_result:
pd.DataFrame(quesntion_types_result[i]).transpose().to_csv(outfile_path + '/question_type_' + i + '.csv')
# Testing process
def process(args, model, eval_loader):
model_path = args.input + '/model_epoch%s.pth' % args.epoch
print('loading %s' % model_path)
model_data = torch.load(model_path)
# Comment because do not use multi gpu
# model = nn.DataParallel(model)
model = model.to(args.device)
model.load_state_dict(model_data.get('model_state', model_data))
model.train(False)
if not os.path.exists(args.output):
os.makedirs(args.output)
if args.use_RAD:
result, quesntion_types_result = get_result(model, eval_loader, args.device, args)
outfile_path = args.output + '/' + args.input.split('/')[1]
outfile = outfile_path + '/results.json'
if not os.path.exists(os.path.dirname(outfile)):
os.makedirs(os.path.dirname(outfile))
print(result)
print(quesntion_types_result)
json.dump(result, open(outfile, 'w'))
save_questiontype_results(outfile_path, quesntion_types_result)
return
process(args, model, eval_loader)