-
Notifications
You must be signed in to change notification settings - Fork 9
/
bss_source.py
919 lines (803 loc) · 38.2 KB
/
bss_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
# -*- coding: utf-8 -*-
'''
Source separation algorithms attempt to extract recordings of individual
sources from a recording of a mixture of sources. Evaluation methods for
source separation compare the extracted sources from reference sources and
attempt to measure the perceptual quality of the separation.
See also the bss_eval MATLAB toolbox:
http://bass-db.gforge.inria.fr/bss_eval/
Conventions
-----------
An audio signal is expected to be in the format of a 1-dimensional array where
the entries are the samples of the audio signal. When providing a group of
estimated or reference sources, they should be provided in a 2-dimensional
array, where the first dimension corresponds to the source number and the
second corresponds to the samples.
Metrics
-------
* :func:`mir_eval.separation.bss_eval_sources`: Computes the bss_eval_sources
metrics from bss_eval, which optionally optimally match the estimated sources
to the reference sources and measure the distortion and artifacts present in
the estimated sources as well as the interference between them.
* :func:`mir_eval.separation.bss_eval_sources_framewise`: Computes the
bss_eval_sources metrics on a frame-by-frame basis.
* :func:`mir_eval.separation.bss_eval_images`: Computes the bss_eval_images
metrics from bss_eval, which includes the metrics in
:func:`mir_eval.separation.bss_eval_sources` plus the image to spatial
distortion ratio.
* :func:`mir_eval.separation.bss_eval_images_framewise`: Computes the
bss_eval_images metrics on a frame-by-frame basis.
References
----------
.. [#vincent2006performance] Emmanuel Vincent, Rémi Gribonval, and Cédric
Févotte, "Performance measurement in blind audio source separation," IEEE
Trans. on Audio, Speech and Language Processing, 14(4):1462-1469, 2006.
'''
import numpy as np
from numpy.core.fromnumeric import shape
import scipy.fftpack
from scipy.linalg import toeplitz
from scipy.signal import fftconvolve
import collections
import itertools
import warnings
# The maximum allowable number of sources (prevents insane computational load)
MAX_SOURCES = 100
def validate(reference_sources, estimated_sources):
"""Checks that the input data to a metric are valid, and throws helpful
errors if not.
Parameters
----------
reference_sources : np.ndarray, shape=(nsrc, nsampl)
matrix containing true sources
estimated_sources : np.ndarray, shape=(nsrc, nsampl)
matrix containing estimated sources
"""
if reference_sources.shape != estimated_sources.shape:
raise ValueError('The shape of estimated sources and the true '
'sources should match. reference_sources.shape '
'= {}, estimated_sources.shape '
'= {}'.format(reference_sources.shape,
estimated_sources.shape))
if reference_sources.ndim > 3 or estimated_sources.ndim > 3:
raise ValueError('The number of dimensions is too high (must be less '
'than 3). reference_sources.ndim = {}, '
'estimated_sources.ndim '
'= {}'.format(reference_sources.ndim,
estimated_sources.ndim))
if reference_sources.size == 0:
warnings.warn("reference_sources is empty, should be of size "
"(nsrc, nsample). sdr, sir, sar, and perm will all "
"be empty np.ndarrays")
elif _any_source_silent(reference_sources):
raise ValueError('All the reference sources should be non-silent (not '
'all-zeros), but at least one of the reference '
'sources is all 0s, which introduces ambiguity to the'
' evaluation. (Otherwise we can add infinitely many '
'all-zero sources.)')
if estimated_sources.size == 0:
warnings.warn("estimated_sources is empty, should be of size "
"(nsrc, nsample). sdr, sir, sar, and perm will all "
"be empty np.ndarrays")
elif _any_source_silent(estimated_sources):
raise ValueError('All the estimated sources should be non-silent (not '
'all-zeros), but at least one of the estimated '
'sources is all 0s. Since we require each reference '
'source to be non-silent, having a silent estimated '
'source will result in an underdetermined system.')
if (estimated_sources.shape[0] > MAX_SOURCES or
reference_sources.shape[0] > MAX_SOURCES):
raise ValueError('The supplied matrices should be of shape (nsrc,'
' nsampl) but reference_sources.shape[0] = {} and '
'estimated_sources.shape[0] = {} which is greater '
'than mir_eval.separation.MAX_SOURCES = {}. To '
'override this check, set '
'mir_eval.separation.MAX_SOURCES to a '
'larger value.'.format(reference_sources.shape[0],
estimated_sources.shape[0],
MAX_SOURCES))
def _any_source_silent(sources):
"""Returns true if the parameter sources has any silent first dimensions"""
return np.any(np.all(np.sum(
sources, axis=tuple(range(2, sources.ndim))) == 0, axis=1))
def bss_eval_sources(reference_sources, estimated_sources,
compute_permutation=True):
"""
Ordering and measurement of the separation quality for estimated source
signals in terms of filtered true source, interference and artifacts.
The decomposition allows a time-invariant filter distortion of length
512, as described in Section III.B of [#vincent2006performance]_.
Passing ``False`` for ``compute_permutation`` will improve the computation
performance of the evaluation; however, it is not always appropriate and
is not the way that the BSS_EVAL Matlab toolbox computes bss_eval_sources.
Examples
--------
>>> # reference_sources[n] should be an ndarray of samples of the
>>> # n'th reference source
>>> # estimated_sources[n] should be the same for the n'th estimated
>>> # source
>>> (sdr, sir, sar,
... perm) = mir_eval.separation.bss_eval_sources(reference_sources,
... estimated_sources)
Parameters
----------
reference_sources : np.ndarray, shape=(nsrc, nsampl)
matrix containing true sources (must have same shape as
estimated_sources)
estimated_sources : np.ndarray, shape=(nsrc, nsampl)
matrix containing estimated sources (must have same shape as
reference_sources)
compute_permutation : bool, optional
compute permutation of estimate/source combinations (True by default)
Returns
-------
sdr : np.ndarray, shape=(nsrc,)
vector of Signal to Distortion Ratios (SDR)
sir : np.ndarray, shape=(nsrc,)
vector of Source to Interference Ratios (SIR)
sar : np.ndarray, shape=(nsrc,)
vector of Sources to Artifacts Ratios (SAR)
perm : np.ndarray, shape=(nsrc,)
vector containing the best ordering of estimated sources in
the mean SIR sense (estimated source number ``perm[j]`` corresponds to
true source number ``j``). Note: ``perm`` will be ``[0, 1, ...,
nsrc-1]`` if ``compute_permutation`` is ``False``.
References
----------
.. [#] Emmanuel Vincent, Shoko Araki, Fabian J. Theis, Guido Nolte, Pau
Bofill, Hiroshi Sawada, Alexey Ozerov, B. Vikrham Gowreesunker, Dominik
Lutter and Ngoc Q.K. Duong, "The Signal Separation Evaluation Campaign
(2007-2010): Achievements and remaining challenges", Signal Processing,
92, pp. 1928-1936, 2012.
"""
# make sure the input is of shape (nsrc, nsampl)
if estimated_sources.ndim == 1:
estimated_sources = estimated_sources[np.newaxis, :]
if reference_sources.ndim == 1:
reference_sources = reference_sources[np.newaxis, :]
validate(reference_sources, estimated_sources)
# If empty matrices were supplied, return empty lists (special case)
if reference_sources.size == 0 or estimated_sources.size == 0:
return np.array([]), np.array([]), np.array([]), np.array([])
nsrc = estimated_sources.shape[0]
# does user desire permutations?
if compute_permutation:
# compute criteria for all possible pair matches
sdr = np.empty((nsrc, nsrc))
sir = np.empty((nsrc, nsrc))
sar = np.empty((nsrc, nsrc))
for jest in range(nsrc):
for jtrue in range(nsrc):
s_true, e_spat, e_interf, e_artif = \
_bss_decomp_mtifilt(reference_sources,
estimated_sources[jest],
jtrue, 512)
sdr[jest, jtrue], sir[jest, jtrue], sar[jest, jtrue] = \
_bss_source_crit(s_true, e_spat, e_interf, e_artif)
# select the best ordering
perms = list(itertools.permutations(list(range(nsrc))))
mean_sir = np.empty(len(perms))
dum = np.arange(nsrc)
for (i, perm) in enumerate(perms):
mean_sir[i] = np.mean(sir[perm, dum])
popt = perms[np.argmax(mean_sir)]
idx = (popt, dum)
return (sdr[idx], sir[idx], sar[idx], np.asarray(popt))
else:
# compute criteria for only the simple correspondence
# (estimate 1 is estimate corresponding to reference source 1, etc.)
sdr = np.empty(nsrc)
sir = np.empty(nsrc)
sar = np.empty(nsrc)
for j in range(nsrc):
s_true, e_spat, e_interf, e_artif = \
_bss_decomp_mtifilt(reference_sources,
estimated_sources[j],
j, 512)
sdr[j], sir[j], sar[j] = \
_bss_source_crit(s_true, e_spat, e_interf, e_artif)
# return the default permutation for compatibility
popt = np.arange(nsrc)
return (sdr, sir, sar, popt)
def bss_eval_sources_framewise(reference_sources, estimated_sources,
window=30 * 44100, hop=15 * 44100,
compute_permutation=False):
"""Framewise computation of bss_eval_sources
Please be aware that this function does not compute permutations (by
default) on the possible relations between reference_sources and
estimated_sources due to the dangers of a changing permutation. Therefore
(by default), it assumes that ``reference_sources[i]`` corresponds to
``estimated_sources[i]``. To enable computing permutations please set
``compute_permutation`` to be ``True`` and check that the returned ``perm``
is identical for all windows.
NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated
using only a single window or are shorter than the window length, the
result of :func:`mir_eval.separation.bss_eval_sources` called on
``reference_sources`` and ``estimated_sources`` (with the
``compute_permutation`` parameter passed to
:func:`mir_eval.separation.bss_eval_sources`) is returned.
Examples
--------
>>> # reference_sources[n] should be an ndarray of samples of the
>>> # n'th reference source
>>> # estimated_sources[n] should be the same for the n'th estimated
>>> # source
>>> (sdr, sir, sar,
... perm) = mir_eval.separation.bss_eval_sources_framewise(
reference_sources,
... estimated_sources)
Parameters
----------
reference_sources : np.ndarray, shape=(nsrc, nsampl)
matrix containing true sources (must have the same shape as
``estimated_sources``)
estimated_sources : np.ndarray, shape=(nsrc, nsampl)
matrix containing estimated sources (must have the same shape as
``reference_sources``)
window : int, optional
Window length for framewise evaluation (default value is 30s at a
sample rate of 44.1kHz)
hop : int, optional
Hop size for framewise evaluation (default value is 15s at a
sample rate of 44.1kHz)
compute_permutation : bool, optional
compute permutation of estimate/source combinations for all windows
(False by default)
Returns
-------
sdr : np.ndarray, shape=(nsrc, nframes)
vector of Signal to Distortion Ratios (SDR)
sir : np.ndarray, shape=(nsrc, nframes)
vector of Source to Interference Ratios (SIR)
sar : np.ndarray, shape=(nsrc, nframes)
vector of Sources to Artifacts Ratios (SAR)
perm : np.ndarray, shape=(nsrc, nframes)
vector containing the best ordering of estimated sources in
the mean SIR sense (estimated source number ``perm[j]`` corresponds to
true source number ``j``). Note: ``perm`` will be ``range(nsrc)`` for
all windows if ``compute_permutation`` is ``False``
"""
# make sure the input is of shape (nsrc, nsampl)
if estimated_sources.ndim == 1:
estimated_sources = estimated_sources[np.newaxis, :]
if reference_sources.ndim == 1:
reference_sources = reference_sources[np.newaxis, :]
validate(reference_sources, estimated_sources)
# If empty matrices were supplied, return empty lists (special case)
if reference_sources.size == 0 or estimated_sources.size == 0:
return np.array([]), np.array([]), np.array([]), np.array([])
nsrc = reference_sources.shape[0]
nwin = int(
np.floor((reference_sources.shape[1] - window + hop) / hop)
)
# if fewer than 2 windows would be evaluated, return the sources result
if nwin < 2:
result = bss_eval_sources(reference_sources,
estimated_sources,
compute_permutation)
return [np.expand_dims(score, -1) for score in result]
# compute the criteria across all windows
sdr = np.empty((nsrc, nwin))
sir = np.empty((nsrc, nwin))
sar = np.empty((nsrc, nwin))
perm = np.empty((nsrc, nwin))
# k iterates across all the windows
for k in range(nwin):
win_slice = slice(k * hop, k * hop + window)
ref_slice = reference_sources[:, win_slice]
est_slice = estimated_sources[:, win_slice]
# check for a silent frame
if (not _any_source_silent(ref_slice) and
not _any_source_silent(est_slice)):
sdr[:, k], sir[:, k], sar[:, k], perm[:, k] = bss_eval_sources(
ref_slice, est_slice, compute_permutation
)
else:
# if we have a silent frame set results as np.nan
sdr[:, k] = sir[:, k] = sar[:, k] = perm[:, k] = np.nan
return sdr, sir, sar, perm
def bss_eval_images(reference_sources, estimated_sources,
compute_permutation=True):
"""Implementation of the bss_eval_images function from the
BSS_EVAL Matlab toolbox.
Ordering and measurement of the separation quality for estimated source
signals in terms of filtered true source, interference and artifacts.
This method also provides the ISR measure.
The decomposition allows a time-invariant filter distortion of length
512, as described in Section III.B of [#vincent2006performance]_.
Passing ``False`` for ``compute_permutation`` will improve the computation
performance of the evaluation; however, it is not always appropriate and
is not the way that the BSS_EVAL Matlab toolbox computes bss_eval_images.
Examples
--------
>>> # reference_sources[n] should be an ndarray of samples of the
>>> # n'th reference source
>>> # estimated_sources[n] should be the same for the n'th estimated
>>> # source
>>> (sdr, isr, sir, sar,
... perm) = mir_eval.separation.bss_eval_images(reference_sources,
... estimated_sources)
Parameters
----------
reference_sources : np.ndarray, shape=(nsrc, nsampl, nchan)
matrix containing true sources
estimated_sources : np.ndarray, shape=(nsrc, nsampl, nchan)
matrix containing estimated sources
compute_permutation : bool, optional
compute permutation of estimate/source combinations (True by default)
Returns
-------
sdr : np.ndarray, shape=(nsrc,)
vector of Signal to Distortion Ratios (SDR)
isr : np.ndarray, shape=(nsrc,)
vector of source Image to Spatial distortion Ratios (ISR)
sir : np.ndarray, shape=(nsrc,)
vector of Source to Interference Ratios (SIR)
sar : np.ndarray, shape=(nsrc,)
vector of Sources to Artifacts Ratios (SAR)
perm : np.ndarray, shape=(nsrc,)
vector containing the best ordering of estimated sources in
the mean SIR sense (estimated source number ``perm[j]`` corresponds to
true source number ``j``). Note: ``perm`` will be ``(1,2,...,nsrc)``
if ``compute_permutation`` is ``False``.
References
----------
.. [#] Emmanuel Vincent, Shoko Araki, Fabian J. Theis, Guido Nolte, Pau
Bofill, Hiroshi Sawada, Alexey Ozerov, B. Vikrham Gowreesunker, Dominik
Lutter and Ngoc Q.K. Duong, "The Signal Separation Evaluation Campaign
(2007-2010): Achievements and remaining challenges", Signal Processing,
92, pp. 1928-1936, 2012.
"""
# make sure the input has 3 dimensions
# assuming input is in shape (nsampl) or (nsrc, nsampl)
estimated_sources = np.atleast_3d(estimated_sources)
reference_sources = np.atleast_3d(reference_sources)
# we will ensure input doesn't have more than 3 dimensions in validate
validate(reference_sources, estimated_sources)
# If empty matrices were supplied, return empty lists (special case)
if reference_sources.size == 0 or estimated_sources.size == 0:
return np.array([]), np.array([]), np.array([]), \
np.array([]), np.array([])
# determine size parameters
nsrc = estimated_sources.shape[0]
nsampl = estimated_sources.shape[1]
nchan = estimated_sources.shape[2]
# does the user desire permutation?
if compute_permutation:
# compute criteria for all possible pair matches
sdr = np.empty((nsrc, nsrc))
isr = np.empty((nsrc, nsrc))
sir = np.empty((nsrc, nsrc))
sar = np.empty((nsrc, nsrc))
for jest in range(nsrc):
for jtrue in range(nsrc):
s_true, e_spat, e_interf, e_artif = \
_bss_decomp_mtifilt_images(
reference_sources,
np.reshape(
estimated_sources[jest],
(nsampl, nchan),
order='F'
),
jtrue,
512
)
sdr[jest, jtrue], isr[jest, jtrue], \
sir[jest, jtrue], sar[jest, jtrue] = \
_bss_image_crit(s_true, e_spat, e_interf, e_artif)
# select the best ordering
perms = list(itertools.permutations(range(nsrc)))
mean_sir = np.empty(len(perms))
dum = np.arange(nsrc)
for (i, perm) in enumerate(perms):
mean_sir[i] = np.mean(sir[perm, dum])
popt = perms[np.argmax(mean_sir)]
idx = (popt, dum)
return (sdr[idx], isr[idx], sir[idx], sar[idx], np.asarray(popt))
else:
# compute criteria for only the simple correspondence
# (estimate 1 is estimate corresponding to reference source 1, etc.)
sdr = np.empty(nsrc)
isr = np.empty(nsrc)
sir = np.empty(nsrc)
sar = np.empty(nsrc)
Gj = [0] * nsrc # prepare G matrics with zeroes
G = np.zeros(1)
for j in range(nsrc):
# save G matrix to avoid recomputing it every call
s_true, e_spat, e_interf, e_artif, Gj_temp, G = \
_bss_decomp_mtifilt_images(reference_sources,
np.reshape(estimated_sources[j],
(nsampl, nchan),
order='F'),
j, 512, Gj[j], G)
Gj[j] = Gj_temp
sdr[j], isr[j], sir[j], sar[j] = \
_bss_image_crit(s_true, e_spat, e_interf, e_artif)
# return the default permutation for compatibility
popt = np.arange(nsrc)
return (sdr, isr, sir, sar, popt)
def bss_eval_images_framewise(reference_sources, estimated_sources,
window=30 * 44100, hop=15 * 44100,
compute_permutation=False):
"""Framewise computation of bss_eval_images
Please be aware that this function does not compute permutations (by
default) on the possible relations between ``reference_sources`` and
``estimated_sources`` due to the dangers of a changing permutation.
Therefore (by default), it assumes that ``reference_sources[i]``
corresponds to ``estimated_sources[i]``. To enable computing permutations
please set ``compute_permutation`` to be ``True`` and check that the
returned ``perm`` is identical for all windows.
NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated
using only a single window or are shorter than the window length, the
result of ``bss_eval_sources`` called on ``reference_sources`` and
``estimated_sources`` (with the ``compute_permutation`` parameter passed to
``bss_eval_images``) is returned
Examples
--------
>>> # reference_sources[n] should be an ndarray of samples of the
>>> # n'th reference source
>>> # estimated_sources[n] should be the same for the n'th estimated
>>> # source
>>> (sdr, isr, sir, sar,
... perm) = mir_eval.separation.bss_eval_images_framewise(
reference_sources,
... estimated_sources,
window,
.... hop)
Parameters
----------
reference_sources : np.ndarray, shape=(nsrc, nsampl, nchan)
matrix containing true sources (must have the same shape as
``estimated_sources``)
estimated_sources : np.ndarray, shape=(nsrc, nsampl, nchan)
matrix containing estimated sources (must have the same shape as
``reference_sources``)
window : int
Window length for framewise evaluation
hop : int
Hop size for framewise evaluation
compute_permutation : bool, optional
compute permutation of estimate/source combinations for all windows
(False by default)
Returns
-------
sdr : np.ndarray, shape=(nsrc, nframes)
vector of Signal to Distortion Ratios (SDR)
isr : np.ndarray, shape=(nsrc, nframes)
vector of source Image to Spatial distortion Ratios (ISR)
sir : np.ndarray, shape=(nsrc, nframes)
vector of Source to Interference Ratios (SIR)
sar : np.ndarray, shape=(nsrc, nframes)
vector of Sources to Artifacts Ratios (SAR)
perm : np.ndarray, shape=(nsrc, nframes)
vector containing the best ordering of estimated sources in
the mean SIR sense (estimated source number perm[j] corresponds to
true source number j)
Note: perm will be range(nsrc) for all windows if compute_permutation
is False
"""
# make sure the input has 3 dimensions
# assuming input is in shape (nsampl) or (nsrc, nsampl)
estimated_sources = np.atleast_3d(estimated_sources)
reference_sources = np.atleast_3d(reference_sources)
# we will ensure input doesn't have more than 3 dimensions in validate
validate(reference_sources, estimated_sources)
# If empty matrices were supplied, return empty lists (special case)
if reference_sources.size == 0 or estimated_sources.size == 0:
return np.array([]), np.array([]), np.array([]), np.array([])
nsrc = reference_sources.shape[0]
nwin = int(
np.floor((reference_sources.shape[1] - window + hop) / hop)
)
# if fewer than 2 windows would be evaluated, return the images result
if nwin < 2:
result = bss_eval_images(reference_sources,
estimated_sources,
compute_permutation)
return [np.expand_dims(score, -1) for score in result]
# compute the criteria across all windows
sdr = np.empty((nsrc, nwin))
isr = np.empty((nsrc, nwin))
sir = np.empty((nsrc, nwin))
sar = np.empty((nsrc, nwin))
perm = np.empty((nsrc, nwin))
# k iterates across all the windows
for k in range(nwin):
win_slice = slice(k * hop, k * hop + window)
ref_slice = reference_sources[:, win_slice, :]
est_slice = estimated_sources[:, win_slice, :]
# check for a silent frame
if (not _any_source_silent(ref_slice) and
not _any_source_silent(est_slice)):
sdr[:, k], isr[:, k], sir[:, k], sar[:, k], perm[:, k] = \
bss_eval_images(
ref_slice, est_slice, compute_permutation
)
else:
# if we have a silent frame set results as np.nan
sdr[:, k] = sir[:, k] = sar[:, k] = perm[:, k] = np.nan
return sdr, isr, sir, sar, perm
def _bss_decomp_mtifilt(reference_sources, estimated_source, j, flen):
"""Decomposition of an estimated source image into four components
representing respectively the true source image, spatial (or filtering)
distortion, interference and artifacts, derived from the true source
images using multichannel time-invariant filters.
"""
nsampl = estimated_source.size
# decomposition
# true source image
s_true = np.hstack((reference_sources[j], np.zeros(flen - 1)))
# spatial (or filtering) distortion
e_spat = _project(reference_sources[j, np.newaxis, :], estimated_source,
flen) - s_true
# interference
e_interf = _project(reference_sources,
estimated_source, flen) - s_true - e_spat
# artifacts
e_artif = -s_true - e_spat - e_interf
e_artif[:nsampl] += estimated_source
return (s_true, e_spat, e_interf, e_artif)
def _bss_decomp_mtifilt_images(reference_sources, estimated_source, j, flen,
Gj=None, G=None):
"""Decomposition of an estimated source image into four components
representing respectively the true source image, spatial (or filtering)
distortion, interference and artifacts, derived from the true source
images using multichannel time-invariant filters.
Adapted version to work with multichannel sources.
Improved performance can be gained by passing Gj and G parameters initially
as all zeros. These parameters store the results from the computation of
the G matrix in _project_images and then return them for subsequent calls
to this function. This only works when not computing permuations.
"""
nsampl = np.shape(estimated_source)[0]
nchan = np.shape(estimated_source)[1]
# are we saving the Gj and G parameters?
saveg = Gj is not None and G is not None
# decomposition
# true source image
s_true = np.hstack((np.reshape(reference_sources[j],
(nsampl, nchan),
order="F").transpose(),
np.zeros((nchan, flen - 1))))
# spatial (or filtering) distortion
if saveg:
e_spat, Gj = _project_images(reference_sources[j, np.newaxis, :],
estimated_source, flen, Gj)
else:
e_spat = _project_images(reference_sources[j, np.newaxis, :],
estimated_source, flen)
e_spat = e_spat - s_true
# interference
if saveg:
e_interf, G = _project_images(reference_sources,
estimated_source, flen, G)
else:
e_interf = _project_images(reference_sources,
estimated_source, flen)
e_interf = e_interf - s_true - e_spat
# artifacts
e_artif = -s_true - e_spat - e_interf
e_artif[:, :nsampl] += estimated_source.transpose()
# return Gj and G only if they were passed in
if saveg:
return (s_true, e_spat, e_interf, e_artif, Gj, G)
else:
return (s_true, e_spat, e_interf, e_artif)
def _project(reference_sources, estimated_source, flen):
"""Least-squares projection of estimated source on the subspace spanned by
delayed versions of reference sources, with delays between 0 and flen-1
"""
nsrc = reference_sources.shape[0]
nsampl = reference_sources.shape[1]
# computing coefficients of least squares problem via FFT ##
# zero padding and FFT of input data
reference_sources = np.hstack((reference_sources,
np.zeros((nsrc, flen - 1))))
estimated_source = np.hstack((estimated_source, np.zeros(flen - 1)))
n_fft = int(2 ** np.ceil(np.log2(nsampl + flen - 1.)))
sf = scipy.fftpack.fft(reference_sources, n=n_fft, axis=1)
sef = scipy.fftpack.fft(estimated_source, n=n_fft)
# inner products between delayed versions of reference_sources
G = np.zeros((nsrc * flen, nsrc * flen))
for i in range(nsrc):
for j in range(nsrc):
ssf = sf[i] * np.conj(sf[j])
ssf = np.real(scipy.fftpack.ifft(ssf))
ss = toeplitz(np.hstack((ssf[0], ssf[-1:-flen:-1])),
r=ssf[:flen])
G[i * flen: (i + 1) * flen, j * flen: (j + 1) * flen] = ss
G[j * flen: (j + 1) * flen, i * flen: (i + 1) * flen] = ss.T
# inner products between estimated_source and delayed versions of
# reference_sources
D = np.zeros(nsrc * flen)
for i in range(nsrc):
ssef = sf[i] * np.conj(sef)
ssef = np.real(scipy.fftpack.ifft(ssef))
D[i * flen: (i + 1) * flen] = np.hstack((ssef[0], ssef[-1:-flen:-1]))
# Computing projection
# Distortion filters
try:
C = np.linalg.solve(G, D).reshape(flen, nsrc, order='F')
except np.linalg.linalg.LinAlgError:
C = np.linalg.lstsq(G, D)[0].reshape(flen, nsrc, order='F')
# Filtering
sproj = np.zeros(nsampl + flen - 1)
for i in range(nsrc):
sproj += fftconvolve(C[:, i], reference_sources[i])[:nsampl + flen - 1]
return sproj
def _project_images(reference_sources, estimated_source, flen, G=None):
"""Least-squares projection of estimated source on the subspace spanned by
delayed versions of reference sources, with delays between 0 and flen-1.
Passing G as all zeros will populate the G matrix and return it so it can
be passed into the next call to avoid recomputing G (this will only works
if not computing permutations).
"""
nsrc = reference_sources.shape[0]
nsampl = reference_sources.shape[1]
nchan = reference_sources.shape[2]
reference_sources = np.reshape(np.transpose(reference_sources, (2, 0, 1)),
(nchan * nsrc, nsampl), order='F')
# computing coefficients of least squares problem via FFT ##
# zero padding and FFT of input data
reference_sources = np.hstack((reference_sources,
np.zeros((nchan * nsrc, flen - 1))))
estimated_source = \
np.hstack((estimated_source.transpose(), np.zeros((nchan, flen - 1))))
n_fft = int(2 ** np.ceil(np.log2(nsampl + flen - 1.)))
sf = scipy.fftpack.fft(reference_sources, n=n_fft, axis=1)
sef = scipy.fftpack.fft(estimated_source, n=n_fft)
# inner products between delayed versions of reference_sources
if G is None:
saveg = False
G = np.zeros((nchan * nsrc * flen, nchan * nsrc * flen))
for i in range(nchan * nsrc):
for j in range(i + 1):
ssf = sf[i] * np.conj(sf[j])
ssf = np.real(scipy.fftpack.ifft(ssf))
ss = toeplitz(np.hstack((ssf[0], ssf[-1:-flen:-1])),
r=ssf[:flen])
G[i * flen: (i + 1) * flen, j * flen: (j + 1) * flen] = ss
G[j * flen: (j + 1) * flen, i * flen: (i + 1) * flen] = ss.T
else: # avoid recomputing G (only works if no permutation is desired)
saveg = True # return G
if np.all(G == 0): # only compute G if passed as 0
G = np.zeros((nchan * nsrc * flen, nchan * nsrc * flen))
for i in range(nchan * nsrc):
for j in range(i + 1):
ssf = sf[i] * np.conj(sf[j])
ssf = np.real(scipy.fftpack.ifft(ssf))
ss = toeplitz(np.hstack((ssf[0], ssf[-1:-flen:-1])),
r=ssf[:flen])
G[i * flen: (i + 1) * flen, j * flen: (j + 1) * flen] = ss
G[j * flen: (j + 1) * flen, i * flen: (i + 1) * flen] = ss.T
# inner products between estimated_source and delayed versions of
# reference_sources
D = np.zeros((nchan * nsrc * flen, nchan))
for k in range(nchan * nsrc):
for i in range(nchan):
ssef = sf[k] * np.conj(sef[i])
ssef = np.real(scipy.fftpack.ifft(ssef))
D[k * flen: (k + 1) * flen, i] = \
np.hstack((ssef[0], ssef[-1:-flen:-1])).transpose()
# Computing projection
# Distortion filters
try:
C = np.linalg.solve(G, D).reshape(flen, nchan * nsrc, nchan, order='F')
except np.linalg.linalg.LinAlgError:
C = np.linalg.lstsq(G, D)[0].reshape(flen, nchan * nsrc, nchan,
order='F')
# Filtering
sproj = np.zeros((nchan, nsampl + flen - 1))
for k in range(nchan * nsrc):
for i in range(nchan):
sproj[i] += fftconvolve(C[:, k, i].transpose(),
reference_sources[k])[:nsampl + flen - 1]
# return G only if it was passed in
if saveg:
return sproj, G
else:
return sproj
def _bss_source_crit(s_true, e_spat, e_interf, e_artif):
"""Measurement of the separation quality for a given source in terms of
filtered true source, interference and artifacts.
"""
# energy ratios
s_filt = s_true + e_spat
sdr = _safe_db(np.sum(s_filt ** 2), np.sum((e_interf + e_artif) ** 2))
sir = _safe_db(np.sum(s_filt ** 2), np.sum(e_interf ** 2))
sar = _safe_db(np.sum((s_filt + e_interf) ** 2), np.sum(e_artif ** 2))
return (sdr, sir, sar)
def _bss_image_crit(s_true, e_spat, e_interf, e_artif):
"""Measurement of the separation quality for a given image in terms of
filtered true source, spatial error, interference and artifacts.
"""
# energy ratios
sdr = _safe_db(np.sum(s_true ** 2), np.sum((e_spat + e_interf + e_artif) ** 2))
isr = _safe_db(np.sum(s_true ** 2), np.sum(e_spat ** 2))
sir = _safe_db(np.sum((s_true + e_spat) ** 2), np.sum(e_interf ** 2))
sar = _safe_db(np.sum((s_true + e_spat + e_interf) ** 2), np.sum(e_artif ** 2))
return (sdr, isr, sir, sar)
def _safe_db(num, den):
"""Properly handle the potential +Inf db SIR, instead of raising a
RuntimeWarning. Only denominator is checked because the numerator can never
be 0.
"""
if den == 0:
return np.Inf
return 10 * np.log10(num / den)
def evaluate(reference_sources, estimated_sources, **kwargs):
"""Compute all metrics for the given reference and estimated signals.
NOTE: This will always compute :func:`mir_eval.separation.bss_eval_images`
for any valid input and will additionally compute
:func:`mir_eval.separation.bss_eval_sources` for valid input with fewer
than 3 dimensions.
Examples
--------
>>> # reference_sources[n] should be an ndarray of samples of the
>>> # n'th reference source
>>> # estimated_sources[n] should be the same for the n'th estimated source
>>> scores = mir_eval.separation.evaluate(reference_sources,
... estimated_sources)
Parameters
----------
reference_sources : np.ndarray, shape=(nsrc, nsampl[, nchan])
matrix containing true sources
estimated_sources : np.ndarray, shape=(nsrc, nsampl[, nchan])
matrix containing estimated sources
kwargs
Additional keyword arguments which will be passed to the
appropriate metric or preprocessing functions.
Returns
-------
scores : dict
Dictionary of scores, where the key is the metric name (str) and
the value is the (float) score achieved.
"""
# Compute all the metrics
scores = collections.OrderedDict()
sdr, isr, sir, sar, perm = util.filter_kwargs(
bss_eval_images,
reference_sources,
estimated_sources,
**kwargs
)
scores['Images - Source to Distortion'] = sdr.tolist()
scores['Images - Image to Spatial'] = isr.tolist()
scores['Images - Source to Interference'] = sir.tolist()
scores['Images - Source to Artifact'] = sar.tolist()
scores['Images - Source permutation'] = perm.tolist()
sdr, isr, sir, sar, perm = util.filter_kwargs(
bss_eval_images_framewise,
reference_sources,
estimated_sources,
**kwargs
)
scores['Images Frames - Source to Distortion'] = sdr.tolist()
scores['Images Frames - Image to Spatial'] = isr.tolist()
scores['Images Frames - Source to Interference'] = sir.tolist()
scores['Images Frames - Source to Artifact'] = sar.tolist()
scores['Images Frames - Source permutation'] = perm.tolist()
# Verify we can compute sources on this input
if reference_sources.ndim < 3 and estimated_sources.ndim < 3:
sdr, sir, sar, perm = util.filter_kwargs(
bss_eval_sources_framewise,
reference_sources,
estimated_sources,
**kwargs
)
scores['Sources Frames - Source to Distortion'] = sdr.tolist()
scores['Sources Frames - Source to Interference'] = sir.tolist()
scores['Sources Frames - Source to Artifact'] = sar.tolist()
scores['Sources Frames - Source permutation'] = perm.tolist()
sdr, sir, sar, perm = util.filter_kwargs(
bss_eval_sources,
reference_sources,
estimated_sources,
**kwargs
)
scores['Sources - Source to Distortion'] = sdr.tolist()
scores['Sources - Source to Interference'] = sir.tolist()
scores['Sources - Source to Artifact'] = sar.tolist()
scores['Sources - Source permutation'] = perm.tolist()
return scores