-
Notifications
You must be signed in to change notification settings - Fork 33
/
utils.py
178 lines (146 loc) · 7.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import glob
import random
import json
import pickle
import gc
import numpy as np
import cv2
from keras.utils import to_categorical
from keras.callbacks import Callback
from keras.layers import concatenate
from keras.layers.core import Lambda
from keras.models import Model
from keras.utils.data_utils import Sequence
from keras import backend as K
import tensorflow as tf
class MapillaryGenerator(Sequence):
def __init__(self, folder='datasets/mapillary', mode='training', n_classes=66, batch_size=1, resize_shape=None,
crop_shape=(640, 320), horizontal_flip=True, vertical_flip=False, brightness=0.1, rotation=5.0, zoom=0.1):
self.image_path_list = sorted(glob.glob(os.path.join(folder, mode, 'images/*')))
self.label_path_list = sorted(glob.glob(os.path.join(folder, mode, 'instances/*')))
self.mode = mode
self.n_classes = n_classes
self.batch_size = batch_size
self.resize_shape = resize_shape
self.crop_shape = crop_shape
self.horizontal_flip = horizontal_flip
self.vertical_flip = vertical_flip
self.brightness = brightness
self.rotation = rotation
self.zoom = zoom
# Preallocate memory
if mode == 'training' and self.crop_shape:
self.X = np.zeros((batch_size, crop_shape[1], crop_shape[0], 3), dtype='float32')
self.Y1 = np.zeros((batch_size, crop_shape[1]//4, crop_shape[0]//4, self.n_classes), dtype='float32')
self.Y2 = np.zeros((batch_size, crop_shape[1]//8, crop_shape[0]//8, self.n_classes), dtype='float32')
self.Y3 = np.zeros((batch_size, crop_shape[1]//16, crop_shape[0]//16, self.n_classes), dtype='float32')
elif self.resize_shape:
self.X = np.zeros((batch_size, resize_shape[1], resize_shape[0], 3), dtype='float32')
self.Y1 = np.zeros((batch_size, resize_shape[1]//4, resize_shape[0]//4, self.n_classes), dtype='float32')
self.Y2 = np.zeros((batch_size, resize_shape[1]//8, resize_shape[0]//8, self.n_classes), dtype='float32')
self.Y3 = np.zeros((batch_size, resize_shape[1]//16, resize_shape[0]//16, self.n_classes), dtype='float32')
else:
raise Exception('No image dimensions specified!')
def __len__(self):
return len(self.image_path_list) // self.batch_size
def __getitem__(self, i):
for n, (image_path, label_path) in enumerate(zip(self.image_path_list[i*self.batch_size:(i+1)*self.batch_size],
self.label_path_list[i*self.batch_size:(i+1)*self.batch_size])):
image = cv2.imread(image_path, 1)
label = cv2.imread(label_path, 0)
if self.resize_shape:
image = cv2.resize(image, self.resize_shape)
label = cv2.resize(label, self.resize_shape)
# Do augmentation (only if training)
if self.mode == 'training':
if self.horizontal_flip and random.randint(0,1):
image = cv2.flip(image, 1)
label = cv2.flip(label, 1)
if self.vertical_flip and random.randint(0,1):
image = cv2.flip(image, 0)
label = cv2.flip(label, 0)
if self.brightness:
factor = 1.0 + abs(random.gauss(mu=0.0, sigma=self.brightness))
if random.randint(0,1):
factor = 1.0/factor
table = np.array([((i / 255.0) ** factor) * 255 for i in np.arange(0, 256)]).astype(np.uint8)
image = cv2.LUT(image, table)
if self.rotation:
angle = random.gauss(mu=0.0, sigma=self.rotation)
else:
angle = 0.0
if self.zoom:
scale = random.gauss(mu=1.0, sigma=self.zoom)
else:
scale = 1.0
if self.rotation or self.zoom:
M = cv2.getRotationMatrix2D((image.shape[1]//2, image.shape[0]//2), angle, scale)
image = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))
label = cv2.warpAffine(label, M, (label.shape[1], label.shape[0]))
if self.crop_shape:
image, label = _random_crop(image, label, self.crop_shape)
self.X[n] = image
self.Y1[n] = to_categorical(cv2.resize(label, (label.shape[1]//4, label.shape[0]//4)), self.n_classes).reshape((label.shape[0]//4, label.shape[1]//4, -1))
self.Y2[n] = to_categorical(cv2.resize(label, (label.shape[1]//8, label.shape[0]//8)), self.n_classes).reshape((label.shape[0]//8, label.shape[1]//8, -1))
self.Y3[n] = to_categorical(cv2.resize(label, (label.shape[1]//16, label.shape[0]//16)), self.n_classes).reshape((label.shape[0]//16, label.shape[1]//16, -1))
return self.X, [self.Y1, self.Y2, self.Y3]
def on_epoch_end(self):
# Shuffle dataset for next epoch
c = list(zip(self.image_path_list, self.label_path_list))
random.shuffle(c)
self.image_path_list, self.label_path_list = zip(*c)
# Fix memory leak (Keras bug)
gc.collect()
class Visualization(Callback):
def __init__(self, resize_shape=(640, 320), batch_steps=10, n_gpu=1, **kwargs):
super(Visualization, self).__init__(**kwargs)
self.resize_shape = resize_shape
self.batch_steps = batch_steps
self.n_gpu = n_gpu
self.counter = 0
# TODO: Remove this lazy hardcoded paths
self.test_images_list = glob.glob('datasets/mapillary/testing/images/*')
with open('datasets/mapillary/config.json') as config_file:
config = json.load(config_file)
self.labels = config['labels']
def on_batch_end(self, batch, logs={}):
self.counter += 1
if self.counter == self.batch_steps:
self.counter = 0
test_image = cv2.resize(cv2.imread(random.choice(self.test_images_list), 1), self.resize_shape)
inputs = [test_image]*self.n_gpu
output, _, _ = self.model.predict(np.array(inputs), batch_size=self.n_gpu)
cv2.imshow('input', test_image)
cv2.waitKey(1)
cv2.imshow('output', apply_color_map(np.argmax(output[0], axis=-1), self.labels))
cv2.waitKey(1)
class PolyDecay:
def __init__(self, initial_lr, power, n_epochs):
self.initial_lr = initial_lr
self.power = power
self.n_epochs = n_epochs
def scheduler(self, epoch):
return self.initial_lr * np.power(1.0 - 1.0*epoch/self.n_epochs, self.power)
class ExpDecay:
def __init__(self, initial_lr, decay):
self.initial_lr = initial_lr
self.decay = decay
def scheduler(self, epoch):
return self.initial_lr * np.exp(-self.decay*epoch)
# Taken from Mappillary Vistas demo.py
def apply_color_map(image_array, labels):
color_array = np.zeros((image_array.shape[0], image_array.shape[1], 3), dtype=np.uint8)
for label_id, label in enumerate(labels):
# set all pixels with the current label to the color of the current label
color_array[image_array == label_id] = label["color"]
return color_array
def _random_crop(image, label, crop_shape):
if (image.shape[0] != label.shape[0]) or (image.shape[1] != label.shape[1]):
raise Exception('Image and label must have the same dimensions!')
if (crop_shape[0] < image.shape[1]) and (crop_shape[1] < image.shape[0]):
x = random.randrange(image.shape[1]-crop_shape[0])
y = random.randrange(image.shape[0]-crop_shape[1])
return image[y:y+crop_shape[1], x:x+crop_shape[0], :], label[y:y+crop_shape[1], x:x+crop_shape[0]]
else:
raise Exception('Crop shape exceeds image dimensions!')