-
Notifications
You must be signed in to change notification settings - Fork 357
/
Copy pathfinetune.py
246 lines (219 loc) · 9.56 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Code adapted from https://github.com/bigcode-project/starcoder2/blob/main/finetune.py
import argparse
import multiprocessing
import os
import torch
import transformers
from accelerate import PartialState
from datasets import load_dataset
from peft import LoraConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
logging,
set_seed,
)
import numpy as np
import random
import warnings
import sys
from trl import SFTTrainer
from trl.trainer import ConstantLengthDataset
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_id", type=str, default="aiXcoder/aixcoder-7b-base")
parser.add_argument("--dataset_name", type=str, default="the-stack-smol")
parser.add_argument("--subset", type=str, default="data/rust")
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--fim_rate", type=float, default=0.5)
parser.add_argument("--dataset_text_field", type=str, default="content")
parser.add_argument("--max_seq_length", type=int, default=1024)
parser.add_argument("--max_steps", type=int, default=100)
parser.add_argument("--micro_batch_size", type=int, default=1)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--bf16", type=bool, default=True)
parser.add_argument("--attention_dropout", type=float, default=0.1)
parser.add_argument("--learning_rate", type=float, default=2e-6)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--warmup_steps", type=int, default=100)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--output_dir", type=str, default="finetune_aix_7b")
parser.add_argument("--num_proc", type=int, default=None)
parser.add_argument("--push_to_hub", type=bool, default=False)
return parser.parse_args()
def print_rank_0(message):
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(message, flush=True, file=sys.stderr)
else:
print(message, flush=True)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print_rank_0(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
class RandomFIMDataset(ConstantLengthDataset):
"""
This class supports the random fill-in-the-middle (FIM) task. If `fim_rate` is greater than 0,
it constructs data in the fill-in-the-middle format with a probability of `fim_rate`.
The aiXcoder-7b-base model uses structured FIM during pre-training,
where a complete code block is constructed as the MIDDLE.
However, creating such training data involves syntactic parsing,
and we currently do not plan to open source the processing code.
"""
def __init__(self, tokenizer, dataset, dataset_text_field=None, fim_rate=0, formatting_func=None, infinite=False, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6, eos_token_id=0, shuffle=True, append_concat_token=True, add_special_tokens=True):
self.fim_rate = fim_rate
self.fim_spm_rate = 0.5
self.np_rand = np.random.RandomState(seed=3574)
if self.fim_rate > 0:
print_rank_0(f"constructing data wit FIM: fim_rate: {self.fim_rate}")
super().__init__(tokenizer, dataset, dataset_text_field, formatting_func, infinite, seq_length, num_of_sequences, chars_per_token, eos_token_id, shuffle, append_concat_token, add_special_tokens)
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
if self.fim_rate > 0:
if self.np_rand.binomial(1, self.fim_rate): # sample bernoulli dist
contents = self.formatting_func(next(iterator))
try:
boundaries = list(self.np_rand.randint(low=0, high=len(contents) + 1, size=2))
boundaries.sort()
except ValueError as e:
print(len(contents), contents)
print(e)
raise e
prefix = contents[:boundaries[0]]
middle = contents[boundaries[0]:boundaries[1]]
suffix = contents[boundaries[1]:]
if self.np_rand.binomial(1, self.fim_spm_rate):
contents = f"<s>▁<AIX-SPAN-PRE>▁<AIX-SPAN-POST>{suffix}▁<AIX-SPAN-MIDDLE>{prefix}{middle}</s>"
else:
contents = f"<s>▁<AIX-SPAN-PRE>{prefix}▁<AIX-SPAN-POST>{suffix}▁<AIX-SPAN-MIDDLE>{middle}</s>"
else:
contents = f"<s>{self.formatting_func(next(iterator))}</s>"
else:
contents = f"<s>{self.formatting_func(next(iterator))}</s>"
buffer.append(contents)
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
warnings.warn("The dataset reached end and the iterator is reset to the start.")
else:
more_examples = False
break
tokenized_inputs = self.tokenizer(buffer, add_special_tokens=self.add_special_tokens, truncation=False)[
"input_ids"
]
all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input)
examples = []
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
examples.append(input_ids)
if self.shuffle:
random.shuffle(examples)
for example in examples:
self.current_size += 1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
def main(args):
# config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
lora_config = LoraConfig(
r=8,
target_modules=[
"q_proj",
"o_proj",
"k_proj",
"v_proj",
"gate_proj",
"up_proj",
"down_proj",
],
task_type="CAUSAL_LM",
)
# load model and dataset
token = os.environ.get("HF_TOKEN", None)
model = AutoModelForCausalLM.from_pretrained(
args.model_id,
quantization_config=bnb_config,
device_map={"": PartialState().process_index},
attention_dropout=args.attention_dropout,
attn_implementation='flash_attention_2'
)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
print_trainable_parameters(model)
data = load_dataset(
args.dataset_name,
data_dir=args.subset,
split=args.split,
token=token,
num_proc=args.num_proc if args.num_proc else multiprocessing.cpu_count(),
)
train_data = RandomFIMDataset(
tokenizer=tokenizer, dataset=data, fim_rate=args.fim_rate, dataset_text_field=args.dataset_text_field,
infinite=True, seq_length=args.max_seq_length, eos_token_id=tokenizer.eos_token_id
)
# setup the trainer
trainer = SFTTrainer(
model=model,
train_dataset=train_data,
max_seq_length=args.max_seq_length,
args=transformers.TrainingArguments(
per_device_train_batch_size=args.micro_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
warmup_steps=args.warmup_steps,
max_steps=args.max_steps,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
weight_decay=args.weight_decay,
bf16=args.bf16,
logging_strategy="steps",
logging_steps=10,
output_dir=args.output_dir,
optim="paged_adamw_8bit",
seed=args.seed,
run_name=f"train-{args.model_id.split('/')[-1]}",
report_to="none",
),
peft_config=lora_config,
dataset_text_field=args.dataset_text_field,
)
# launch
print_rank_0("Training...")
trainer.train()
print_rank_0("Saving the last checkpoint of the model")
model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
if args.push_to_hub:
trainer.push_to_hub("Upload model")
print_rank_0("Training Done! ")
if __name__ == "__main__":
args = get_args()
set_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
logging.set_verbosity_error()
main(args)