-
Notifications
You must be signed in to change notification settings - Fork 1
/
cs1.m
45 lines (39 loc) · 1.1 KB
/
cs1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function Xest = cs1(theta,M,ratio,L,snr,W)
% Initialisation
deg = -90:1:90;
% Initialising X according
x = (randn(length(theta),L)) .* (sqrt(0.5)) + 1j * (randn(length(theta),L)) .* (sqrt(0.5));
X = zeros(length(deg),L);
for i = 1:length(deg)
for j = 1:length(theta)
if deg(i) == theta(j)
X(i,:) = x(j,:);
end
end
end
% Forming the steering vector for each source
sensorN = 0:M-1;
% sensorN = 0 + (M-1)*rand(M,1);
for i = 1:length(deg)
A(:,i) = exp(1j * 2 * pi * sind(deg(i)) * sensorN * ratio)';
end
% Obtaining the noise free sensor measurements for L snapshots
for i = 1:L
AX(:,i) = A * X(:,i);
end
% Adding AWGN
for i = 1:L
n(i) = (sum(AX(:,i) .* conj(AX(:,i))))^0.5;
N(:,i) = ((randn(length(sensorN),1))*(sqrt(0.5*((n(i)*10^(-snr/20))^2)/M))) +1j * ((randn(length(sensorN),1))*(sqrt(0.5*((n(i)*10^(-snr/20))^2)/M)));
end
Y = (AX + N);
%for i =1:L
cvx_begin quiet
variable xest(length(deg),1)
minimize(norm(diag(W)*xest,1))
subject to
norm(Y-A*xest,2)<=norm(N)
cvx_end
Xest = xest;
%end
end