-
Notifications
You must be signed in to change notification settings - Fork 1
/
hitable.h
143 lines (126 loc) · 4.41 KB
/
hitable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#ifndef HITABLE_H_
#define HITABLE_H_
#include <float.h>
#include "ray.h"
#include "aabb.h"
class material;
struct hit_record {
float t;
float u;
float v;
vec3 p;
vec3 normal;
material *mat_ptr;
};
class hitable {
public:
virtual bool hit(const ray& r, float t_min, float t_max, hit_record& rec) const = 0;
virtual bool bounding_box(float t0, float t1, aabb& box) const = 0;
virtual float pdf_value(const vec3 &origin, const vec3 &v) const { return 0.0; }
virtual vec3 random(const vec3 &origin) { return vec3(1, 0, 0); }
};
class flip_normals : public hitable {
public:
flip_normals(hitable *p) : ptr(p) {}
virtual bool hit(const ray& r, float t_min, float t_max, hit_record& rec) const {
if(ptr->hit(r,t_min,t_max,rec)) {
rec.normal = - rec.normal;
return true;
}
else return false;
}
virtual bool bounding_box(float t0, float t1, aabb& box) const {
return ptr->bounding_box(t0, t1, box);
}
hitable *ptr;
};
/* TRANSLATE */
class translate : public hitable {
public:
translate(hitable* p, const vec3& displacement):ptr(p), offset(displacement) { }
virtual bool hit(const ray& r, float t_min, float t_max, hit_record& rec) const;
virtual bool bounding_box(float t0, float t1, aabb& box) const;
hitable* ptr;
vec3 offset;
};
bool translate::hit(const ray& r, float t_min, float t_max, hit_record& rec) const {
ray move_r(r.origin() - offset, r.direction(), r.time());
if(ptr->hit(move_r, t_min, t_max, rec)) {
rec.p += offset;
return true;
}
else return false;
}
bool translate::bounding_box(float t0, float t1, aabb& box) const {
if(ptr->bounding_box(t0, t1, box)){
box = aabb(box.min() + offset, box.max() + offset);
return true;
}
else return false;
}
/* ROTATE */
class rotate_y : public hitable {
public:
rotate_y(hitable *p, float angle);
virtual bool hit(const ray& r, float t_min, float t_max, hit_record& rec) const;
virtual bool bounding_box(float t0, float t1, aabb& box) const {
box = bbox;
return hasbox;
}
hitable *ptr;
float sin_theta;
float cos_theta;
bool hasbox;
aabb bbox;
};
rotate_y::rotate_y(hitable *p, float angle) : ptr(p) {
float radians = (3.1415926535 / 180.0) * angle;
sin_theta = sin(radians);
cos_theta = cos(radians);
hasbox = ptr->bounding_box(0, 1, bbox);
vec3 max(FLT_MAX, FLT_MAX, FLT_MAX);
vec3 min(-FLT_MAX, -FLT_MAX, -FLT_MAX);
// get bounding_box : check all vertexes of bbox
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
for(int k=0;k<2;k++){
float x = i * bbox.max().x() + (1 - i) * bbox.min().x();
float y = j * bbox.max().y() + (1 - j) * bbox.min().y();
float z = k * bbox.max().z() + (1 - k) * bbox.min().z();
float newx = cos_theta * x + sin_theta * z;
float newz = -sin_theta * x + cos_theta * z;
vec3 tester (newx,y,newz);
for (int c = 0; c < 3; c++) {
if (tester[c] > max[c])
max[c] = tester[c];
if (tester[c] < min[c])
min[c] = tester[c];
}
}
}
}
bbox = aabb(min, max);
}
bool rotate_y::hit(const ray& r, float t_min, float t_max, hit_record& rec) const {
// rotate ray
vec3 origin = r.origin();
vec3 direction = r.direction();
origin[0] = cos_theta * r.origin()[0] - sin_theta * r.origin()[2];
origin[2] = sin_theta * r.origin()[0] + cos_theta * r.origin()[2];
direction[0] = cos_theta * r.direction()[0] - sin_theta * r.direction()[2];
direction[2] = sin_theta * r.direction()[0] + cos_theta * r.direction()[2];
ray rotated_r(origin, direction, r.time());
if (ptr->hit(rotated_r, t_min, t_max, rec)) {
vec3 p = rec.p;
vec3 normal = rec.normal;
p[0] = cos_theta * rec.p[0] + sin_theta * rec.p[2];
p[2] = -sin_theta * rec.p[0] + cos_theta * rec.p[2];
normal[0] = cos_theta * rec.normal[0] + sin_theta * rec.normal[2];
normal[2] = -sin_theta * rec.normal[0] + cos_theta * rec.normal[2];
rec.p = p;
rec.normal = normal;
return true;
}
else return false;
}
#endif