-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreconstruction.py
77 lines (62 loc) · 3.27 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from logger import Logger, Visualizer
from modules.losses import reconstruction_loss
import numpy as np
import imageio
from sync_batchnorm import DataParallelWithCallback
def generate(generator, appearance_image, kp_appearance, kp_video):
out = {'video_prediction': [], 'video_deformed': []}
for i in range(kp_video['mean'].shape[1]):
kp_target = {k: v[:, i:(i + 1)] for k, v in kp_video.items()}
kp_dict_part = {'kp_driving': kp_target, 'kp_source': kp_appearance}
out_part = generator(appearance_image, **kp_dict_part)
out['video_prediction'].append(out_part['video_prediction'])
out['video_deformed'].append(out_part['video_deformed'])
out['video_prediction'] = torch.cat(out['video_prediction'], dim=2)
out['video_deformed'] = torch.cat(out['video_deformed'], dim=2)
out['kp_driving'] = kp_video
out['kp_source'] = kp_appearance
return out
def reconstruction(config, generator, kp_detector, checkpoint, log_dir, dataset):
png_dir = os.path.join(log_dir, 'reconstruction/png')
log_dir = os.path.join(log_dir, 'reconstruction')
if checkpoint is not None:
Logger.load_cpk(checkpoint, generator=generator, kp_detector=kp_detector)
else:
raise AttributeError("Checkpoint should be specified for mode='test'.")
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(png_dir):
os.makedirs(png_dir)
loss_list = []
generator = DataParallelWithCallback(generator)
kp_detector = DataParallelWithCallback(kp_detector)
generator.eval()
kp_detector.eval()
cat_dict = lambda l, dim: {k: torch.cat([v[k] for v in l], dim=dim) for k in l[0]}
for it, x in tqdm(enumerate(dataloader)):
if config['reconstruction_params']['num_videos'] is not None:
if it > config['reconstruction_params']['num_videos']:
break
with torch.no_grad():
kp_appearance = kp_detector(x['video'][:, :, :1])
d = x['video'].shape[2]
kp_video = cat_dict([kp_detector(x['video'][:, :, i:(i + 1)]) for i in range(d)], dim=1)
out = generate(generator, appearance_image=x['video'][:, :, :1], kp_appearance=kp_appearance,
kp_video=kp_video)
x['source'] = x['video'][:, :, :1]
# Store to .png for evaluation
out_video_batch = out['video_prediction'].data.cpu().numpy()
out_video_batch = np.concatenate(np.transpose(out_video_batch, [0, 2, 3, 4, 1])[0], axis=1)
imageio.imsave(os.path.join(png_dir, x['name'][0] + '.png'), (255 * out_video_batch).astype(np.uint8))
image = Visualizer(**config['visualizer_params']).visualize_reconstruction(x, out)
image_name = x['name'][0] + config['reconstruction_params']['format']
imageio.mimsave(os.path.join(log_dir, image_name), image)
loss = reconstruction_loss(out['video_prediction'].cpu(), x['video'].cpu(), 1)
loss_list.append(loss.data.cpu().numpy())
del x, kp_video, kp_appearance, out, loss
print("Reconstruction loss: %s" % np.mean(loss_list))