-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathkruskal.py
69 lines (45 loc) · 1.53 KB
/
kruskal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
Kruskal's algorithm for finding minimal spanning tree (MST) of a graph.
Aladdin Persson <aladdin.persson at hotmail dot com>
2019-02-16 Initial programming
"""
import sys
sys.path.append("../depth-first-search")
from DFS_stack_iterative import DFS
def load_graph(file="edges.txt"):
G = []
try:
f = open(file, "r")
except IOError:
raise ("File does not exist!")
line_list = f.readlines()
num_nodes, num_edges = map(int, line_list[0].split())
for line in line_list[1:]:
G.append(tuple(map(int, line.split()))[::-1])
return sorted(G), num_nodes
def kruskal(G, num_nodes):
MST = []
tot_cost = 0
temp_G = {key: [] for key in range(1, num_nodes + 1)}
for each_set in G:
temp_G[each_set[2]] += [each_set[1]]
temp_G[each_set[1]] += [each_set[2]]
visited, path = DFS(temp_G, each_set[2])
if len(set(path)) == len(path):
tot_cost += each_set[0]
if each_set[2] not in MST:
MST.append(each_set[2])
if each_set[1] not in MST:
MST.append(each_set[1])
else:
temp_G[each_set[2]].pop()
temp_G[each_set[1]].pop()
return MST, tot_cost
if __name__ == "__main__":
print("---- Computing minimal spanning tree using Kruskal's Algorithm ----")
print()
G, num_nodes = load_graph()
print(f"Our loaded graph is: {G}")
MST, total_cost = kruskal(G)
print(f"Our minimum spanning tree is: {MST}")
print(f"Total cost is: {total_cost}")