forked from flynn/noise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
state.go
496 lines (448 loc) · 14.6 KB
/
state.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Package noise implements the Noise Protocol Framework.
//
// Noise is a low-level framework for building crypto protocols. Noise protocols
// support mutual and optional authentication, identity hiding, forward secrecy,
// zero round-trip encryption, and other advanced features. For more details,
// visit http://noiseprotocol.org.
package noise
import (
"crypto/rand"
"errors"
"fmt"
"github.com/nbrownus/go-x509"
"io"
)
// A CipherState provides symmetric encryption and decryption after a successful
// handshake.
type CipherState struct {
cs CipherSuite
c Cipher
k [32]byte
n uint64
invalid bool
}
// Encrypt encrypts the plaintext and then appends the ciphertext and an
// authentication tag across the ciphertext and optional authenticated data to
// out. This method automatically increments the nonce after every call, so
// messages must be decrypted in the same order.
func (s *CipherState) Encrypt(out, ad, plaintext []byte) []byte {
if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")
}
out = s.c.Encrypt(out, s.n, ad, plaintext)
s.n++
return out
}
func (s *CipherState) EncryptDanger(out, ad, plaintext []byte, n uint64) []byte {
if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")
}
out = s.c.Encrypt(out, n, ad, plaintext)
return out
}
// Decrypt checks the authenticity of the ciphertext and authenticated data and
// then decrypts and appends the plaintext to out. This method automatically
// increments the nonce after every call, messages must be provided in the same
// order that they were encrypted with no missing messages.
func (s *CipherState) Decrypt(out, ad, ciphertext []byte) ([]byte, error) {
if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")
}
out, err := s.c.Decrypt(out, s.n, ad, ciphertext)
s.n++
return out, err
}
func (s *CipherState) DecryptDanger(out, ad, ciphertext []byte, n uint64) ([]byte, error) {
if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")
}
out, err := s.c.Decrypt(out, n, ad, ciphertext)
return out, err
}
// Cipher returns the low-level symmetric encryption primitive. It should only
// be used if nonces need to be managed manually, for example with a network
// protocol that can deliver out-of-order messages. This is dangerous, users
// must ensure that they are incrementing a nonce after every encrypt operation.
// After calling this method, it is an error to call Encrypt/Decrypt on the
// CipherState.
func (s *CipherState) Cipher() Cipher {
s.invalid = true
return s.c
}
type symmetricState struct {
CipherState
hasK bool
ck []byte
h []byte
prevCK []byte
prevH []byte
}
func (s *symmetricState) InitializeSymmetric(handshakeName []byte) {
h := s.cs.Hash()
if len(handshakeName) <= h.Size() {
s.h = make([]byte, h.Size())
copy(s.h, handshakeName)
} else {
h.Write(handshakeName)
s.h = h.Sum(nil)
}
s.ck = make([]byte, len(s.h))
copy(s.ck, s.h)
}
func (s *symmetricState) MixKey(dhOutput []byte) {
s.n = 0
s.hasK = true
var hk []byte
s.ck, hk, _ = hkdf(s.cs.Hash, 2, s.ck[:0], s.k[:0], nil, s.ck, dhOutput)
copy(s.k[:], hk)
s.c = s.cs.Cipher(s.k)
}
func (s *symmetricState) MixHash(data []byte) {
h := s.cs.Hash()
h.Write(s.h)
h.Write(data)
s.h = h.Sum(s.h[:0])
}
func (s *symmetricState) MixKeyAndHash(data []byte) {
var hk []byte
var temp []byte
s.ck, temp, hk = hkdf(s.cs.Hash, 3, s.ck[:0], temp, s.k[:0], s.ck, data)
s.MixHash(temp)
copy(s.k[:], hk)
s.c = s.cs.Cipher(s.k)
s.n = 0
s.hasK = true
}
func (s *symmetricState) EncryptAndHash(out, plaintext []byte) []byte {
if !s.hasK {
s.MixHash(plaintext)
return append(out, plaintext...)
}
ciphertext := s.Encrypt(out, s.h, plaintext)
s.MixHash(ciphertext[len(out):])
return ciphertext
}
func (s *symmetricState) DecryptAndHash(out, data []byte) ([]byte, error) {
if !s.hasK {
s.MixHash(data)
return append(out, data...), nil
}
plaintext, err := s.Decrypt(out, s.h, data)
if err != nil {
return nil, err
}
s.MixHash(data)
return plaintext, nil
}
func (s *symmetricState) Split() (*CipherState, *CipherState) {
s1, s2 := &CipherState{cs: s.cs}, &CipherState{cs: s.cs}
hk1, hk2, _ := hkdf(s.cs.Hash, 2, s1.k[:0], s2.k[:0], nil, s.ck, nil)
copy(s1.k[:], hk1)
copy(s2.k[:], hk2)
s1.c = s.cs.Cipher(s1.k)
s2.c = s.cs.Cipher(s2.k)
return s1, s2
}
func (s *symmetricState) Checkpoint() {
if len(s.ck) > cap(s.prevCK) {
s.prevCK = make([]byte, len(s.ck))
}
s.prevCK = s.prevCK[:len(s.ck)]
copy(s.prevCK, s.ck)
if len(s.h) > cap(s.prevH) {
s.prevH = make([]byte, len(s.h))
}
s.prevH = s.prevH[:len(s.h)]
copy(s.prevH, s.h)
}
func (s *symmetricState) Rollback() {
s.ck = s.ck[:len(s.prevCK)]
copy(s.ck, s.prevCK)
s.h = s.h[:len(s.prevH)]
copy(s.h, s.prevH)
}
// A MessagePattern is a single message or operation used in a Noise handshake.
type MessagePattern int
// A HandshakePattern is a list of messages and operations that are used to
// perform a specific Noise handshake.
type HandshakePattern struct {
Name string
InitiatorPreMessages []MessagePattern
ResponderPreMessages []MessagePattern
Messages [][]MessagePattern
}
const (
MessagePatternS MessagePattern = iota
MessagePatternE
MessagePatternDHEE
MessagePatternDHES
MessagePatternDHSE
MessagePatternDHSS
MessagePatternPSK
)
// MaxMsgLen is the maximum number of bytes that can be sent in a single Noise
// message.
const MaxMsgLen = 65535
// A HandshakeState tracks the state of a Noise handshake. It may be discarded
// after the handshake is complete.
type HandshakeState struct {
ss symmetricState
// s DHKey // local static keypair
s X509 // local certificate keypair
r x509.Certificate // remote certificate public key only
e DHKey // local ephemeral keypair
rs []byte // remote party's static public key
re []byte // remote party's ephemeral public key
psk []byte // preshared key, maybe zero length
messagePatterns [][]MessagePattern
shouldWrite bool
msgIdx int
rng io.Reader
}
// A Config provides the details necessary to process a Noise handshake. It is
// never modified by this package, and can be reused.
type Config struct {
// CipherSuite is the set of cryptographic primitives that will be used.
CipherSuite CipherSuite
// Random is the source for cryptographically appropriate random bytes. If
// zero, it is automatically configured.
Random io.Reader
// Pattern is the pattern for the handshake.
Pattern HandshakePattern
// Initiator must be true if the first message in the handshake will be sent
// by this peer.
Initiator bool
// Prologue is an optional message that has already be communicated and must
// be identical on both sides for the handshake to succeed.
Prologue []byte
// PresharedKey is the optional preshared key for the handshake.
PresharedKey []byte
// PresharedKeyPlacement specifies the placement position of the PSK token
// when PresharedKey is specified
PresharedKeyPlacement int
// StaticKeypair is this peer's static keypair, required if part of the
// handshake.
StaticKeypair X509
// EphemeralKeypair is this peer's ephemeral keypair that was provided as
// a pre-message in the handshake.
EphemeralKeypair DHKey
// PeerStatic is the static public key of the remote peer that was provided
// as a pre-message in the handshake.
PeerStatic []byte
// PeerEphemeral is the ephemeral public key of the remote peer that was
// provided as a pre-message in the handshake.
PeerEphemeral []byte
}
// NewHandshakeState starts a new handshake using the provided configuration.
func NewHandshakeState(c Config) *HandshakeState {
hs := &HandshakeState{
s: c.StaticKeypair,
e: c.EphemeralKeypair,
rs: c.PeerStatic,
psk: c.PresharedKey,
messagePatterns: c.Pattern.Messages,
shouldWrite: c.Initiator,
rng: c.Random,
}
if hs.rng == nil {
hs.rng = rand.Reader
}
if len(c.PeerEphemeral) > 0 {
hs.re = make([]byte, len(c.PeerEphemeral))
copy(hs.re, c.PeerEphemeral)
}
hs.ss.cs = c.CipherSuite
pskModifier := ""
if len(hs.psk) > 0 {
if len(hs.psk) != 32 {
panic("noise: specification mandates 256-bit preshared keys")
}
pskModifier = fmt.Sprintf("psk%d", c.PresharedKeyPlacement)
hs.messagePatterns = append([][]MessagePattern(nil), hs.messagePatterns...)
if c.PresharedKeyPlacement == 0 {
hs.messagePatterns[0] = append([]MessagePattern{MessagePatternPSK}, hs.messagePatterns[0]...)
} else {
hs.messagePatterns[c.PresharedKeyPlacement-1] = append(hs.messagePatterns[c.PresharedKeyPlacement-1], MessagePatternPSK)
}
}
hs.ss.InitializeSymmetric([]byte("Noise_" + c.Pattern.Name + pskModifier + "_" + string(hs.ss.cs.Name())))
hs.ss.MixHash(c.Prologue)
for _, m := range c.Pattern.InitiatorPreMessages {
switch {
case c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.s.Public)
case c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.e.Public)
case !c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.rs)
case !c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.re)
}
}
for _, m := range c.Pattern.ResponderPreMessages {
switch {
case !c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.s.Public)
case !c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.e.Public)
case c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.rs)
case c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.re)
}
}
return hs
}
// WriteMessage appends a handshake message to out. The message will include the
// optional payload if provided. If the handshake is completed by the call, two
// CipherStates will be returned, one is used for encryption of messages to the
// remote peer, the other is used for decryption of messages from the remote
// peer. It is an error to call this method out of sync with the handshake
// pattern.
func (s *HandshakeState) WriteMessage(out, payload []byte) ([]byte, *CipherState, *CipherState) {
if !s.shouldWrite {
panic("noise: unexpected call to WriteMessage should be ReadMessage")
}
if s.msgIdx > len(s.messagePatterns)-1 {
panic("noise: no handshake messages left")
}
if len(payload) > MaxMsgLen {
panic("noise: message is too long")
}
// fmt.Println("LEN PAYLOAD :", len(payload))
for _, msg := range s.messagePatterns[s.msgIdx] {
switch msg {
case MessagePatternE:
s.e = s.ss.cs.GenerateKeypair(s.rng)
out = append(out, s.e.Public...)
s.ss.MixHash(s.e.Public)
if len(s.psk) > 0 {
s.ss.MixKey(s.e.Public)
}
case MessagePatternS:
if len(s.s.Public) == 0 {
panic("noise: invalid state, s.Public is nil")
}
//out = s.ss.EncryptAndHash(out, s.s.Public)
size := len(s.s.Cert.Raw)
s.s.Cert.Raw = append([]byte{byte(size)}, s.s.Cert.Raw...)
// fmt.Println("RAW CERT: ", s.s.Cert.Raw)
out = s.ss.EncryptAndHash(out, s.s.Cert.Raw)
case MessagePatternDHEE:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.re))
case MessagePatternDHES:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.rs))
case MessagePatternDHSE:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.re))
case MessagePatternDHSS:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.rs))
case MessagePatternPSK:
s.ss.MixKeyAndHash(s.psk)
}
}
s.shouldWrite = false
s.msgIdx++
out = s.ss.EncryptAndHash(out, payload)
if s.msgIdx >= len(s.messagePatterns) {
cs1, cs2 := s.ss.Split()
return out, cs1, cs2
}
return out, nil, nil
}
// ErrShortMessage is returned by ReadMessage if a message is not as long as it should be.
var ErrShortMessage = errors.New("noise: message is too short")
// ReadMessage processes a received handshake message and appends the payload,
// if any to out. If the handshake is completed by the call, two CipherStates
// will be returned, one is used for encryption of messages to the remote peer,
// the other is used for decryption of messages from the remote peer. It is an
// error to call this method out of sync with the handshake pattern.
func (s *HandshakeState) ReadMessage(out, message []byte) ([]byte, *CipherState, *CipherState, error) {
if s.shouldWrite {
panic("noise: unexpected call to ReadMessage should be WriteMessage")
}
if s.msgIdx > len(s.messagePatterns)-1 {
panic("noise: no handshake messages left")
}
s.ss.Checkpoint()
var err error
for _, msg := range s.messagePatterns[s.msgIdx] {
switch msg {
case MessagePatternE, MessagePatternS:
expected := s.ss.cs.DHLen()
if msg == MessagePatternS && s.ss.hasK {
expected += 16
}
if len(message) < expected {
return nil, nil, nil, ErrShortMessage
}
switch msg {
case MessagePatternE:
if cap(s.re) < s.ss.cs.DHLen() {
s.re = make([]byte, s.ss.cs.DHLen())
}
s.re = s.re[:s.ss.cs.DHLen()]
copy(s.re, message)
s.ss.MixHash(s.re)
if len(s.psk) > 0 {
s.ss.MixKey(s.re)
}
case MessagePatternS:
if len(s.rs) > 0 {
panic("noise: invalid state, rs is not nil")
}
var rawCert []byte
expected = len(message) - 516
rawCert, err = s.ss.DecryptAndHash(rawCert[:0], message[:expected])
// temporary fix for now while we investigate
if len(rawCert) < 1 {
s.ss.Rollback()
return nil, nil, nil, errors.New("Bad certificate size")
}
certificate, _ := x509.ParseCertificate(rawCert[1:])
// for now store the remote certificate into the handshake state struct as well
s.r = *certificate
X509Pub := certificate.PublicKey.(*x509.X25519PublicKey)
s.rs = []byte(*X509Pub)
}
if err != nil {
s.ss.Rollback()
return nil, nil, nil, err
}
message = message[expected:]
case MessagePatternDHEE:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.re))
case MessagePatternDHES:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.re))
case MessagePatternDHSE:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.rs))
case MessagePatternDHSS:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.rs))
case MessagePatternPSK:
s.ss.MixKeyAndHash(s.psk)
}
}
out, err = s.ss.DecryptAndHash(out, message)
if err != nil {
s.ss.Rollback()
return nil, nil, nil, err
}
s.shouldWrite = true
s.msgIdx++
if s.msgIdx >= len(s.messagePatterns) {
cs1, cs2 := s.ss.Split()
return out, cs1, cs2, nil
}
return out, nil, nil, nil
}
// ChannelBinding provides a value that uniquely identifies the session and can
// be used as a channel binding. It is an error to call this method before the
// handshake is complete.
func (s *HandshakeState) ChannelBinding() []byte {
return s.ss.h
}
// PeerStatic returns the static key provided by the remote peer during
// a handshake. It is an error to call this method if a handshake message
// containing a static key has not been read.
func (s *HandshakeState) PeerStatic() []byte {
return s.rs
}