-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d.mp
1040 lines (906 loc) · 32.9 KB
/
3d.mp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%\input epsf
%%\def\newpage{\vfill\eject}
%%\advance\vsize1in
%%\let\ora\overrightarrow
%%\def\title#1{\hrule\vskip1mm#1\par\vskip1mm\hrule\vskip5mm}
%%\def\figure#1{\par\centerline{\epsfbox{#1}}}
%%\title{{\bf 3D.MP : 3-DIMENSIONAL REPRESENTATIONS
%% AND ANIMATIONS IN METAPOST}}
%% version 1.0, 8 April 1998
%% {\bf Denis Roegel} ({\tt roegel@loria.fr})
%% This package provides definitions enabling the manipulation
%% and animation of 3-dimensional objects.
%% Such objects can be included in a \TeX{} file or used on web pages
%% for instance. See the documentation enclosed in the distribution for
%% more details.
%% Thanks to John Hobby and Ulrik Vieth for helpful hints.
%% LIMITATIONS:
%% $-$ an object can not include \TeX{} labels; to overcome this limitation
%% would need to wrap the metapost output with dvips so that the
%% necessary fonts are loaded (easy to do, but not done here)
%% PROJECTS FOR THE FUTURE:
%% $-$ take light sources into account and show shadows and darker faces
%% $-$ handle overlapping of objects ({\it obj\_name\/} can be used when
%% going through all faces)
if known three_d_version:
expandafter endinput % avoids loading this package twice
fi;
message "*** 3d, version 1.0 (c) D. Roegel, 8 April 1998 ***";
numeric three_d_version;
three_d_version=1.0;
%%\newpage
%%\title{Vector operations}
% definition of vector |i| by its coordinates
def vect_def(expr i,xi,yi,zi)= vect[i]x:=xi;vect[i]y:=yi;vect[i]z:=zi; enddef;
% a point is stored as a vector
let set_point = vect_def;
% |set_obj_point| is like |set_point|, but the first parameter
% is a local point number
def set_obj_point(expr i,xi,yi,zi)=set_point(pnt(i),xi,yi,zi) enddef;
% definition of a vector by an other vector
def vect_def_vect(expr i,j)=
vect[i]x:=vect[j]x;vect[i]y:=vect[j]y;vect[i]z:=vect[j]z;
enddef;
% vector sum: |vect[k]| $\leftarrow$ |vect[i]|$+$|vect[j]|
def vect_sum(expr k,i,j)=
vect[k]x:=vect[i]x+vect[j]x;
vect[k]y:=vect[i]y+vect[j]y;
vect[k]z:=vect[i]z+vect[j]z;
enddef;
% vector translation: |vect[i]| $\leftarrow$ |vect[i]|$+$|vect[v]|
def vect_translate(expr i,v)=vect_sum(i,i,v) enddef;
% vector difference: |vect[k]| $\leftarrow$ |vect[i]|$-$|vect[j]|
def vect_diff(expr k,i,j)=
vect[k]x:=vect[i]x-vect[j]x;
vect[k]y:=vect[i]y-vect[j]y;
vect[k]z:=vect[i]z-vect[j]z;
enddef;
% dot product of |vect[i]| and |vect[j]|
vardef vect_dprod(expr i,j)=
(vect[i]x*vect[j]x+vect[i]y*vect[j]y+vect[i]z*vect[j]z)
enddef;
% modulus of |vect[i]|
vardef vect_mod(expr i)= sqrt(vect_dprod(i,i)) enddef;
% vector product: |vect[k]| $\leftarrow$ |vect[i]| $\land$ |vect[j]|
def vect_prod(expr k,i,j)=
vect[k]x:=vect[i]y*vect[j]z-vect[i]z*vect[j]y;
vect[k]y:=vect[i]z*vect[j]x-vect[i]x*vect[j]z;
vect[k]z:=vect[i]x*vect[j]y-vect[i]y*vect[j]x;
enddef;
% scalar multiplication: |vect[j]| $\leftarrow$ |vect[i]*v|
def vect_mult(expr j,i,v)=
vect[j]x:=v*vect[i]x;vect[j]y:=v*vect[i]y;vect[j]z:=v*vect[i]z;
enddef;
% middle of two points
def mid_point(expr k,i,j)= vect_sum(k,i,j);vect_mult(k,k,.5); enddef;
%%\newpage
%%\title{Vector rotation}
% Rotation of |vect[v]| around |vect[axis]| by an angle |alpha|
%% The vector $\vec{v}$ is first projected on the axis
%% giving vectors $\vec{a}$ and $\vec{h}$:
%%\figure{vect-fig.9}
%% If we set
%% $\vec{b}={\ora{axis}\over \left\Vert\vcenter{\ora{axis}}\right\Vert}$,
%% the rotated vector $\vec{v'}$ is equal to $\vec{h}+\vec{f}$
%% where $\vec{f}=\cos\alpha \cdot \vec{a} + \sin\alpha\cdot \vec{c}$.
%% and $\vec{h}=(\vec{v}\cdot\vec{b})\vec{b}$
%%\figure{vect-fig.10}
% The rotation is independent of |vect[axis]|'s module.
% |v| = old and new vector
% |axis| = rotation axis
% |alpha| = rotation angle
%
vardef vect_rotate(expr v,axis,alpha)=
save v_a,v_b,v_c,v_d,v_e,v_f;
v_a:=new_vect;v_b:=new_vect;v_c:=new_vect;
v_d:=new_vect;v_e:=new_vect;v_f:=new_vect;
v_g:=new_vect;v_h:=new_vect;
vect_mult(v_b,axis,1/vect_mod(axis));
vect_mult(v_h,v_b,vect_dprod(v_b,v)); % projection of |v| on |axis|
vect_diff(v_a,v,v_h);
vect_prod(v_c,v_b,v_a);
vect_mult(v_d,v_a,cosd(alpha));
vect_mult(v_e,v_c,sind(alpha));
vect_sum(v_f,v_d,v_e);
vect_sum(v,v_f,v_h);
free_vect(v_h);free_vect(v_g);
free_vect(v_f);free_vect(v_e);free_vect(v_d);
free_vect(v_c);free_vect(v_b);free_vect(v_a);
enddef;
%%\newpage
%%\title{Operations on objects}
% |iname| is the handler for an instance of an object of class |name|
% |iname| must be a letter string
vardef assign_obj(expr iname,name)=
save tmpdef;
string tmpdef; % we need to add double quotes (char 34)
tmpdef="def " & iname & "_class=" & ditto & name & ditto & " enddef";
scantokens tmpdef;
def_obj(iname);
enddef;
% |name| is the the name of an object instance
% It must be made only of letters (or underscores), but no digits.
def def_obj(expr name)=
scantokens begingroup
save tmpdef;string tmpdef;
tmpdef="def_" & obj_class_(name) & "(" & ditto & name & ditto & ")";
tmpdef
endgroup
enddef;
% This macro puts an object back where it was right at the beginning.
% |iname| is the name of an object instance.
vardef reset_obj(expr iname)=
save tmpdef;
string tmpdef;
define_current_point_offset_(iname);
tmpdef="set_" & obj_class_(iname) & "_points";
scantokens tmpdef(iname);
enddef;
% Put an object at position given by |pos| (a vector) and
% with orientations given by angles |psi|, |theta|, |phi|.
% The object is scaled by |scale|.
% |iname| is the name of an object instance.
vardef put_obj(expr iname,pos,scale,psi,theta,phi)=
reset_obj(iname);scale_obj(iname,scale);
v_x:=new_vect;v_y:=new_vect;v_z:=new_vect;
vect_def_vect(v_x,vect_I);
vect_def_vect(v_y,vect_J);
vect_def_vect(v_z,vect_K);
rotate_obj_abs_pv(iname,point_null,v_z,psi);
vect_rotate(v_x,v_z,psi);vect_rotate(v_y,v_z,psi);
rotate_obj_abs_pv(iname,point_null,v_y,theta);
vect_rotate(v_x,v_y,theta);vect_rotate(v_z,v_y,theta);
rotate_obj_abs_pv(iname,point_null,v_x,phi);
vect_rotate(v_y,v_x,phi);vect_rotate(v_z,v_x,phi);
free_vect(v_z);free_vect(v_y);free_vect(v_x);
translate_obj(iname,pos);
enddef;
%%\newpage
%%\title{Rotation, translation and scaling of objects}
% Rotation of an object instance |name| around an axis
% going through a point |p| (local to the object)
% and directed by vector |vect[v]|. The angle of rotation is |a|.
vardef rotate_obj_pv(expr name,p,v,a)=
define_current_point_offset_(name);
rotate_obj_abs_pv(name,pnt(p),v,a);
enddef;
vardef rotate_obj_abs_pv(expr name,p,v,a)=
save v_a;
define_current_point_offset_(name);
v_a:=new_vect;
for i:=1 upto obj_points_(name):
vect_diff(v_a,pnt(i),p);
vect_rotate(v_a,v,a);
vect_sum(pnt(i),v_a,p);
endfor;
free_vect(v_a);
enddef;
% Rotation of an object instance |name| around an axis
% going through a point |p| (local to the object)
% and directed by vector $\ora{pq}$. The angle of rotation is |a|.
vardef rotate_obj_pp(expr name,p,q,a)=
save v_a,axis;
define_current_point_offset_(name);
v_a:=new_vect;axis:=new_vect;
vect_diff(axis,pnt(q),pnt(p));
for i:=1 upto obj_points_(name):
vect_diff(v_a,pnt(i),pnt(p));
vect_rotate(v_a,axis,a);
vect_sum(pnt(i),v_a,pnt(p));
endfor;
free_vect(axis);free_vect(v_a);
enddef;
% Translation of an object instance |name| by a vector |vect[v]|.
vardef translate_obj(expr name,v)=
define_current_point_offset_(name);
for i:=1 upto obj_points_(name):
vect_sum(pnt(i),pnt(i),v);
endfor;
enddef;
% Scalar multiplication of an object instance |name| by a scalar |v|.
vardef scale_obj(expr name,v)=
define_current_point_offset_(name);
for i:=1 upto obj_points_(name):
vect_mult(pnt(i),pnt(i),v);
endfor;
enddef;
%%\newpage
%%\title{Functions to build new points in space}
% Rotation in a plane: this is useful to define a regular polygon.
% |k| is a new point obtained from point |j| by rotation around |o|
% by a angle $\alpha$ equal to the angle from |i| to |j|.
%%\figure{vect-fig.11}
vardef rotate_in_plane_(expr k,o,i,j)=
save cosalpha,sinalpha,alpha,v_a,v_b,v_c;
v_a:=new_vect;v_b:=new_vect;v_c:=new_vect;
vect_diff(v_a,i,o);vect_diff(v_b,j,o);vect_prod(v_c,v_a,v_b);
cosalpha=vect_dprod(v_a,v_b)/vect_mod(v_a)/vect_mod(v_b);
sinalpha=sqrt(1-cosalpha**2);
alpha=angle((cosalpha,sinalpha));
vect_rotate(v_b,v_c,alpha);
vect_sum(k,o,v_b);
free_vect(v_c);free_vect(v_b);free_vect(v_a);
enddef;
vardef rotate_in_plane(expr k,o,i,j)=
rotate_in_plane_(pnt(k),o,pnt(i),pnt(j))
enddef;
% Build a point on a adjacent face.
%% The middle $m$ of points $i$ and $j$ is such that
%% $\widehat{(\ora{om},\ora{mc})}=\alpha$
%% This is useful to define regular polyhedra
%%\figure{vect-fig.7}
vardef new_face_point_(expr c,o,i,j,alpha)=
save v_a,v_b,v_c,v_d,v_e;
v_a:=new_vect;v_b:=new_vect;v_c:=new_vect;v_d:=new_vect;v_e:=new_vect;
vect_diff(v_a,i,o);vect_diff(v_b,j,o);
vect_sum(v_c,v_a,v_b);
vect_mult(v_d,v_c,.5);
vect_diff(v_e,i,j);
vect_sum(c,v_d,o);
vect_rotate(v_d,v_e,alpha);
vect_sum(c,v_d,c);
free_vect(v_e);free_vect(v_d);free_vect(v_c);free_vect(v_b);free_vect(v_a);
enddef;
vardef new_face_point(expr c,o,i,j,alpha)=
new_face_point_(pnt(c),pnt(o),pnt(i),pnt(j),alpha)
enddef;
vardef new_abs_face_point(expr c,o,i,j,alpha)=
new_face_point_(c,o,pnt(i),pnt(j),alpha)
enddef;
%%\newpage
%%\title{Computation of the projection of a point on the ``screen''}
% |p| is the projection of |m|
% |m| = point in space (3 coordinates)
% |p| = point of the intersection plane
%%\figure{vect-fig.8}
vardef project_point(expr p,m)=
save tmpalpha,v_a,v_b;
v_a:=new_vect;v_b:=new_vect;
vect_diff(v_b,m,Obs); % vector |Obs|-|m|
% |vect[v_a]| is |vect[v_b]| expressed in (|ObsI|,|ObsJ|,|ObsK|)
% coordinates.
vect[v_a]x:=vect[IObsI_]x*vect[v_b]x
+vect[IObsJ_]x*vect[v_b]y+vect[IObsK_]x*vect[v_b]z;
vect[v_a]y:=vect[IObsI_]y*vect[v_b]x
+vect[IObsJ_]y*vect[v_b]y+vect[IObsK_]y*vect[v_b]z;
vect[v_a]z:=vect[IObsI_]z*vect[v_b]x
+vect[IObsJ_]z*vect[v_b]y+vect[IObsK_]z*vect[v_b]z;
if vect[v_a]x<Obs_dist: % then, point |m| is too close
message "Point " & decimal m & " too close -> not drawn";
x[p]:=too_big_;y[p]=too_big_;
else:
if (angle(vect[v_a]x,vect[v_a]z)>h_field/2)
or (angle(vect[v_a]x,vect[v_a]y)>v_field/2):
message "Point " & decimal m & " out of screen -> not drawn";
x[p]:=too_big_;y[p]=too_big_;
else:
tmpalpha:=Obs_dist/vect[v_a]x;
y[p]:=drawing_scale*tmpalpha*vect[v_a]y;
x[p]:=drawing_scale*tmpalpha*vect[v_a]z;
fi;
fi;
free_vect(v_b);free_vect(v_a);
enddef;
% Object projection
% This is a mere iteration on |project_point|
def project_obj(expr name)=
define_current_point_offset_(name);
for i:=1 upto obj_points_(name):project_point(ipnt_(i),pnt(i));endfor;
enddef;
%%\newpage
%%\title{Draw one face, hiding it if it is hidden}
% The order of the vertices determines what is the visible side
% of the face. The order must be clockwise when the face is seen.
% |drawhidden| is a boolean; if |true| only hidden faces are drawn; if |false|,
% only visible faces are drawn. Therefore, |draw_face| is called twice
% by |draw_faces|.
vardef draw_face(text vertices)(expr col,drawhidden)=
save p,num,normal_vect,v_a,v_b,v_c,overflow;
path p;boolean overflow;
overflow=false;
forsuffixes $=vertices:
if z[ipnt_($)]=(too_big_,too_big_):overflow:=true; fi;
exitif overflow;
endfor;
if overflow: message "Face can not be drawn, due to overflow";
else:
p=forsuffixes $=vertices:z[ipnt_($)]--endfor cycle;
num0:=0;num1:=0;num2:=0;
% get the three last suffixes:
forsuffixes $=vertices:num0:=num1;num1:=num2;num2:=$;endfor;
normal_vect:=new_vect;v_a:=new_vect;v_b:=new_vect;
v_c:=new_vect;
vect_diff(v_a,pnt(num1),pnt(num0));
vect_diff(v_b,pnt(num2),pnt(num1));
vect_prod(normal_vect,v_a,v_b);
vect_diff(v_c,pnt(num1),Obs);
if filled_faces:
if vect_dprod(normal_vect,v_c)<0:
fill p withcolor col;if draw_contours:drawcontour(p,contourwidth);fi;
else: % |draw p dashed evenly;| if this is done, you must ensure
% that hidden faces are (re)drawn at the end
fi;
else:
if vect_dprod(normal_vect,v_c)<0:%visible
if not drawhidden:draw p;fi;
else: % hidden
if drawhidden:
draw p withcolor background;% avoid strange overlapping dashes
draw p dashed evenly;
fi;
fi;
fi;
free_vect(v_c);free_vect(v_b);free_vect(v_a);free_vect(normal_vect);
fi;
enddef;
% |p| is the path to draw (a face contour) and |thickness| is the pen width
def drawcontour(expr p,thickness)=
pickup pencircle scaled thickness;
draw p;
pickup pencircle scaled .4pt;
enddef;
%%\newpage
% Variables for face handling. First, we have an array for lists of vertices
% corresponding to faces.
string face_points_[];% analogous to |vect| arrays
% Then, we have an array of colors. A color needs to be a string
% representing an hexadecimal RGB coding of a color.
string face_color_[];
% |name| is the name of an object instance
vardef draw_faces(expr name)=
save tmpdef;string tmpdef;
define_current_face_offset_(name);
% first the hidden faces (dashes must be drawn first):
for i:=1 upto obj_faces_(name):
tmpdef:="draw_face(" & face_points_[face(i)]
& ")(hexcolor(" & ditto & face_color_[face(i)] & ditto
& "),true)";scantokens tmpdef;
endfor;
% then, the visible faces:
for i:=1 upto obj_faces_(name):
tmpdef:="draw_face(" & face_points_[face(i)]
& ")(hexcolor(" & ditto & face_color_[face(i)] & ditto
& "),false)";scantokens tmpdef;
endfor;
enddef;
% Draw point |n| of object instance |name|
vardef draw_point(expr name,n)=
define_current_point_offset_(name);
project_point(ipnt_(n),pnt(n));
if z[ipnt_(n)] <> (too_big_,too_big_):
pickup pencircle scaled 5pt;
drawdot(z[ipnt_(n)]);
pickup pencircle scaled .4pt;
fi;
enddef;
vardef draw_axes(expr r,g,b)=
project_point(1,vect_null);
project_point(2,vect_I);
project_point(3,vect_J);
project_point(4,vect_K);
if (z1<>(too_big_,too_big_)):
if (z2<>(too_big_,too_big_)):
drawarrow z1--z2 dashed evenly withcolor r;
fi;
if (z3<>(too_big_,too_big_)):
drawarrow z1--z3 dashed evenly withcolor g;
fi;
if (z4<>(too_big_,too_big_)):
drawarrow z1--z4 dashed evenly withcolor b;
fi;
fi;
enddef;
%%\newpage
% Definition of a macro |obj_name| returning an object name
% when given an absolute
% face number. This definition is built incrementally through a string,
% everytime a new object is defined.
% |obj_name| is defined by |redefine_obj_name_|.
% Initial definition
string index_to_name_;
index_to_name_="def obj_name(expr i)=if i<1:";
% |name| is the name of an object instance
% |n| is the absolute index of its last face
def redefine_obj_name_(expr name,n)=
index_to_name_:=index_to_name_ & "elseif i<=" & decimal n & ":" & ditto
& name & ditto;
scantokens begingroup index_to_name_ & "fi;enddef;" endgroup;
enddef;
% |i| is an absolute face number
% |vertices| is a string representing a list of vertices
% |rgbcolor| is a string representing a color in rgb hexadecimal
def set_face(expr i,vertices,rgbcolor)=
face_points_[i]:=vertices;face_color_[i]:=rgbcolor;
enddef;
% |i| is a local face number
%|vertices| is a string representing a list of vertices
%|rgbcolor| is a string representing a color in rgb hexadecimal
def set_obj_face(expr i,vertices,rgbcolor)=set_face(face(i),vertices,rgbcolor)
enddef;
%%\newpage
%%\title{Compute the vectors corresponding to the observer's viewpoint}
% (vectors |ObsI_|,|ObsJ_| and |ObsK_| in the |vect_I|,|vect_J|,
% |vect_K| reference; and vectors |IObsI_|,|IObsJ_| and |IObsK_|
% which are |vect_I|,|vect_J|,|vect_K|
% in the |ObsI_|,|ObsJ_|,|ObsK_| reference)
%%\figure{vect-fig.16}
%% (here, $\psi>0$, $\theta<0$ and $\phi>0$; moreover,
%% $\vert\theta\vert \leq 90^\circ$)
def compute_reference(expr psi,theta,phi)=
% |ObsI_| defines the direction of observation;
% |ObsJ_| and |ObsK_| the orientation
% (but one of these two vectors is enough,
% since |ObsK_| = |ObsI_| $\land$ |ObsJ_|)
% The vectors are found by rotations of |vect_I|,|vect_J|,|vect_K|.
vect_def_vect(ObsI_,vect_I);vect_def_vect(ObsJ_,vect_J);
vect_def_vect(ObsK_,vect_K);
vect_rotate(ObsI_,ObsK_,psi);
vect_rotate(ObsJ_,ObsK_,psi);% gives ($u$,$v$,$z$)
vect_rotate(ObsI_,ObsJ_,theta);
vect_rotate(ObsK_,ObsJ_,theta);% gives ($Obs_x$,$v$,$w$)
vect_rotate(ObsJ_,ObsI_,phi);
vect_rotate(ObsK_,ObsI_,phi);% gives ($Obs_x$,$Obs_y$,$Obs_z$)
% The passage matrix $P$ from |vect_I|,|vect_J|,|vect_K|
% to |ObsI_|,|ObsJ_|,|ObsK_| is the matrix
% composed of the vectors |ObsI_|,|ObsJ_| and |ObsK_| expressed
% in the base |vect_I|,|vect_J|,|vect_K|.
% We have $X=P X'$ where $X$ are the coordinates of a point
% in |vect_I|,|vect_J|,|vect_K|
% and $X'$ the coordinates of the same point in |ObsI_|,|ObsJ_|,|ObsK_|.
% In order to get $P^{-1}$, it suffices to build vectors using
% the previous rotations in the inverse order.
vect_def_vect(IObsI_,vect_I);vect_def_vect(IObsJ_,vect_J);
vect_def_vect(IObsK_,vect_K);
vect_rotate(IObsK_,IObsI_,-phi);vect_rotate(IObsJ_,IObsI_,-phi);
vect_rotate(IObsK_,IObsJ_,-theta);vect_rotate(IObsI_,IObsJ_,-theta);
vect_rotate(IObsJ_,IObsK_,-psi);vect_rotate(IObsI_,IObsK_,-psi);
enddef;
%%\newpage
%%\title{Point of view}
% This macro computes the three angles necessary for |compute_reference|
% |name| = name of an instance of an object
% |target| = target point (local to object |name|)
% |phi| = angle
vardef point_of_view_obj(expr name,target,phi)=
define_current_point_offset_(name);% enables |pnt|
point_of_view_abs(pnt(target),phi);
enddef;
% Compute absolute perspective. |target| is an absolute point number
vardef point_of_view_abs(expr target,phi)=
save v_a,psi,theta;
v_a:=new_vect;
vect_diff(v_a,target,Obs);
vect_mult(v_a,v_a,1/vect_mod(v_a));
psi=angle((vect[v_a]x,vect[v_a]y));
theta=-angle((vect[v_a]x++vect[v_a]y,vect[v_a]z));
compute_reference(psi,theta,phi);
free_vect(v_a);
enddef;
% Distance between the observer and point |n| of object |name|
% Result is put in |dist|
vardef obs_distance(text dist)(expr name,n)=
save v_a;
v_a:=new_vect;
define_current_point_offset_(name);% enables |pnt|
dist:=vect_mod(v_a,pnt(n),Obs);
free_vect(v_a);
enddef;
%%\newpage
%%\title{Vector and point allocation}
% Allocation is done through a stack of vectors
numeric last_vect_;
last_vect_=0;
% vector allocation
def new_vect=incr(last_vect_)
% |message "Vector " & decimal last_vect_ & " allocated";|
enddef;
let new_point = new_vect;
def new_points(text p)(expr n)=
save p;
numeric p[];
for i:=1 upto n:p[i]:=new_point;endfor;
enddef;
% Free a vector
% A vector can only be freed safely when it was the last vector created.
def free_vect(expr i)=
if i=last_vect_: last_vect_:=last_vect_-1;
else: errmessage("Vector " & decimal i & " can't be freed!");
fi;
enddef;
let free_point = free_vect;
def free_points(text p)(expr n)=
for i:=10 step-1 until 1:free_point(p[i]);endfor;
enddef;
%%\title{Debugging}
def show_vect(expr t,i)=
message "Vector " & t & "="
& "(" & decimal vect[i]x & "," & decimal vect[i]y & ","
& decimal vect[i]z & ")";
enddef;
let show_point=show_vect;
def show_pair(expr t,zz)=
message t & "=(" & decimal xpart(zz) & "," & decimal ypart(zz) & ")";
enddef;
%%\newpage
%%\title{Access to object features}
% |a| must be a string representing an class name, such as |"dodecahedron"|.
% |b| is the tail of a macro name.
def obj_(expr a,b,i)=
scantokens
begingroup save n;string n;n=a & b & i;n
endgroup
enddef;
def obj_points_(expr name)=
obj_(obj_class_(name),"_points",name)
enddef;
def obj_faces_(expr name)=
obj_(obj_class_(name),"_faces",name)
enddef;
vardef obj_point_offset_(expr name)=
obj_(obj_class_(name),"_point_offset",name)
enddef;
vardef obj_face_offset_(expr name)=
obj_(obj_class_(name),"_face_offset",name)
enddef;
def obj_class_(expr name)=obj_(name,"_class","") enddef;
%%\newpage
def define_point_offset_(expr name,o)=
begingroup save n,tmpdef;
string n,tmpdef;
n=obj_class_(name) & "_point_offset" & name;
expandafter numeric scantokens n;
scantokens n:=last_point_offset_;
last_point_offset_:=last_point_offset_+o;
tmpdef="def " & obj_class_(name) & "_points" & name &
"=" & decimal o & " enddef";
scantokens tmpdef;
endgroup
enddef;
def define_face_offset_(expr name,o)=
begingroup save n,tmpdef;
string n,tmpdef;
n=obj_class_(name) & "_face_offset" & name;
expandafter numeric scantokens n;
scantokens n:=last_face_offset_;
last_face_offset_:=last_face_offset_+o;
tmpdef="def " & obj_class_(name) & "_faces" & name &
"=" & decimal o & " enddef";
scantokens tmpdef;
endgroup
enddef;
def define_current_point_offset_(expr name)=
save current_point_offset_;
numeric current_point_offset_;
current_point_offset_:=obj_point_offset_(name);
enddef;
def define_current_face_offset_(expr name)=
save current_face_offset_;
numeric current_face_offset_;
current_face_offset_:=obj_face_offset_(name);
enddef;
%%\newpage
%%\title{Drawing an object}
% |name| is an object instance
def draw_obj(expr name)=project_obj(name);draw_faces(name);enddef;
%%\title{Normalization of an object}
% This macro translates an object so that a list of vertices is centered
% on the origin, and the last vertex is put on a sphere whose radius is 1.
% |name| is the name of the object and |vertices| is a list
% of points whose barycenter will define the center of the object.
% (|vertices| need not be the list of all vertices)
vardef normalize_obj(expr name)(text vertices)=
save v_a,nvertices,last;
numeric v_a,last;
nvertices=0;
v_a=new_vect;vect_def(v_a,0,0,0)
forsuffixes $=vertices:
vect_sum(v_a,v_a,pnt($));
nvertices:=nvertices+1;
last:=$;
endfor;
vect_mult(v_a,v_a,-1/nvertices);
translate_obj(name,v_a);% object centered on the origin
scale_obj(name,1/vect_mod(pnt(last)));
free_vect(v_a);
enddef;
%%\newpage
%%\title{General definitions}
% Vector arrays
numeric vect[]x,vect[]y,vect[]z;
% Observer
numeric Obs;
Obs=new_point;
% default value:
set_point(Obs,0,0,20);
% Observer's vectors
ObsI_=new_vect;ObsJ_=new_vect;ObsK_=new_vect;
IObsI_=new_vect;IObsJ_=new_vect;IObsK_=new_vect;
% distance observer/plane (must be $>0$)
numeric Obs_dist; % represents |Obs_dist| $\times$ |drawing_scale|
% default value:
Obs_dist=2; % means |Obs_dist| $\times$ |drawing_scale|
% Screen Size
% The screen size is defined through two angles: the horizontal field
% and the vertical field
numeric h_field,v_field;
h_field=100; % degrees
v_field=70; % degrees
% Reference vectors $\vec{0}$, $\vec{\imath}$, $\vec{\jmath}$ and $\vec{k}$
% and their definition
numeric vect_null,vect_I,vect_J,vect_K;
vect_null=new_vect;vect_I=new_vect;vect_J=new_vect;vect_K=new_vect;
vect_def(vect_null,0,0,0);
vect_def(vect_I,1,0,0);vect_def(vect_J,0,1,0);vect_def(vect_K,0,0,1);
numeric point_null;
point_null=vect_null;
% Observer's orientation, defined by three angles
numeric Obs_psi,Obs_theta,Obs_phi;
% default value:
Obs_psi=0;Obs_theta=90;Obs_phi=0;
% Points for the figures
numeric points_[];
% |name| is the name of an object instance
% |npoints| is its number of defining points
def new_obj_points(expr name,npoints)=
define_point_offset_(name,npoints);define_current_point_offset_(name);
for i:=1 upto obj_points_(name):pnt(i):=new_point;endfor;
enddef;
% |name| is the name of an object instance
% |nfaces| is its number of defining faces
def new_obj_faces(expr name,nfaces)=
define_face_offset_(name,nfaces);define_current_face_offset_(name);
redefine_obj_name_(name,current_face_offset_+nfaces);
enddef;
%%\newpage
% Absolute point number corresponding to object point number |i|
% This macro must only be used within the function defining an object
% (such as |def_cube|) or the function drawing an object (such as
% |draw_cube|).
def ipnt_(expr i)=i+current_point_offset_ enddef;
def pnt(expr i)=points_[ipnt_(i)] enddef;
def face(expr i)=(i+current_face_offset_) enddef;
% Absolute point number corresponding to local point |n|
% in object instance |name|
vardef pnt_obj(expr name,n)=
hide(define_current_point_offset_(name);) pnt(n)
enddef;
% Absolute face number corresponding to local face |n|
% in object instance |name|
vardef face_obj(expr name,n)=
hide(define_current_face_offset_(name);) face(n)
enddef;
% Scale
numeric drawing_scale;
drawing_scale=2cm;
% Color
% This function is useful when a color is expressed in hexadecimal.
def hexcolor(expr s)=
(hex(substring (0,2) of s)/255,hex(substring (2,4) of s)/255,
hex(substring (4,6) of s)/255)
enddef;
% Filling and contours
boolean filled_faces,draw_contours;
filled_faces=true;
draw_contours=true;
numeric contourwidth; % thickness of contours
contourwidth=1pt;
% Overflow control
% An overflow can occur when an object is too close from the observer
% or if an object is out of sight. We use a special value to mark
% coordinates which would lead to an overflow.
numeric too_big_;
too_big_=4000;
% Object offset (the points defining an object are arranged
% in a single array, and the objects are easier to manipulate
% if the point numbers are divided into a number and an offset).
numeric last_point_offset_,last_face_offset_;
last_point_offset_=0;last_face_offset_=0;
%%\newpage
%%\title{Computation of field parameters of an animation}
numeric xmin_,ymin_,xmax_,ymax_;
def compute_bbox=
if known xmin_:
xmin_:=min(xmin_,xpart(llcorner(currentpicture)));
ymin_:=min(ymin_,ypart(llcorner(currentpicture)));
xmax_:=max(xmax_,xpart(urcorner(currentpicture)));
ymax_:=max(ymax_,ypart(urcorner(currentpicture)));
else:
xmin_=xpart(llcorner(currentpicture));
ymin_=ypart(llcorner(currentpicture));
xmax_=xpart(urcorner(currentpicture));
ymax_=ypart(urcorner(currentpicture));
fi;
enddef;
boolean show_animation_parameters;
show_animation_parameters=false;
numeric paper_height;
paper_height=29.7; % paper height in cm
% show bounding box of an animation, in PostScript points
% and parameters for animation script
vardef show_animation_bbox=
save trx,try,h,w,delta,pnmx,pnmy,pnmw,pnmh,res;
res=36; % 36 dots per inch in bitmap
w=xmax_-xmin_;h=ymax_-ymin_;
if show_animation_parameters:
message "animation bbox: (llx=" & decimal round(xmin_)
& ",lly=" & decimal round(ymin_)
& ",w=" & decimal round(w) & ",h=" & decimal round(h) & ")";
fi;
if xmin_ <=20: trx=50-xmin_;else: trx=0;fi;
if ymin_ <=20: try=50-ymin_;else: try=0;fi;
if show_animation_parameters:
message "translate parameters: "
& decimal round(trx) & " " & decimal round(try);
fi;
xmin_:=xmin_+trx;ymin_:=ymin_+try;
delta=10;
pnmx=round(xmin_*(res/72)-delta);
pnmy=round((paper_height/2.54*72-ymin_-h)*(res/72)-delta);
pnmw=round(w*(res/72)+2*delta);
pnmh=round(h*(res/72)+2*delta);
if show_animation_parameters:
message "pnmcut parameters (with -r36): "
& decimal pnmx & " " & decimal pnmy & " "
& decimal pnmw & " " & decimal pnmh;
fi;
write_script(round(trx),round(try),
pnmx,pnmy,pnmw,pnmh,res,jobname,"create_animation.sh");
enddef;
%%\newpage
%%\title{Creation of a shell script to automate the animation}
% This is UNIX targetted and may need to be customized.
vardef write_script(expr trx,try,xmin,ymin,w,h,res,output,file)=
save s;
string s;
def write_to_file(text arg)=write arg to file; enddef;
write_to_file("#! /bin/sh");
write_to_file("");
write_to_file("/bin/rm -f "&output&".log");
write_to_file("for i in `ls "&output&".*| grep '"&output&".[0-9]'`;do");
if false: "endfor" fi % indentation hack for meta-mode.el
write_to_file("echo $i");
write_to_file("echo '=============='");
s:="awk < $i '{print} /^%%Page: /{print "&ditto;
s:=s&decimal trx&" "&decimal try&" translate\n"&ditto&"}' > $i.ps";
write_to_file(s);
% ghostscript PostScript into ppm
s:="gs -sDEVICE=ppmraw -sPAPERSIZE=a4 -dNOPAUSE ";
s:=s&"-r"&decimal res &" -sOutputFile=$i.ppm -q -- $i.ps";
write_to_file(s);
write_to_file("/bin/rm -f $i.ps");
% possible alternative:
% |s:="mogrify -compress -crop " & decimal(w) & "x" & decimal(h);|
% |s:=s&"+"& decimal(xmin) &"+"&decimal(ymin);|
% |s:=s&" -colors 32 -format gif $i.ppm";|
s:="ppmquant 32 $i.ppm | pnmcut "& decimal(xmin) &" "&decimal(ymin);
s:=s&" "&decimal(w)&" "&decimal(h) &" | ";
s:=s&"ppmtogif > `expr $i.ppm : '\(.*\)ppm'`gif";
write_to_file(s);
write_to_file("/bin/rm -f $i.ppm");
write_to_file("done");
write_to_file("/bin/rm -f "&output&".gif");
s:="gifmerge -10 -l1000 ";
s:=s&output&".*.gif > "&output&".gif";
write_to_file(s);
write_to_file("/bin/rm -f "&output&".*.gif");
write_to_file(EOF);% end of file
enddef;
%%\newpage
%%\title{Standard animation definitions}
% These definitions produce {\it one\/} image of some kind.
extra_endfig:="compute_bbox";
% In the standard animations, the observer follows a circle, shown below:
%%\figure{vect-fig.17}
% Standard image 1: this is an example and may be adapted.
% |name| is an object instance
def one_image(expr name,i,a,rd,ang)=
beginfig(i);
set_point(Obs,-rd*cosd(a*ang),-rd*sind(a*ang),1);
Obs_phi:=90;Obs_dist:=2;
point_of_view_obj(name,1,Obs_phi);% fix point 1 of object |name|
draw_obj(name);
rotate_obj_pv(name,1,vect_I,ang);
draw_point(name,1);% show the rotation point
draw_axes(red,green,blue);
endfig;
enddef;
% Standard image 2: this is an example and may be adapted.
% |name_a| and |name_b| are object instances.
def one_image_two_objects(expr name_a,name_b,i,a,rd,ang)=
beginfig(i);
set_point(Obs,-rd*cosd(a*ang),-rd*sind(a*ang),1);
Obs_phi:=90;Obs_dist:=2;
point_of_view_obj(name_a,1,Obs_phi);% fix point 1 of object |name_a|
draw_obj(name_a);draw_obj(name_b);
rotate_obj_pv(name_a,1,vect_I,ang);
rotate_obj_pv(name_b,13,vect_J,-ang);
%|rotate_obj_pp(name_b,13,7,-ang);|
draw_point(name_a,1);% show the rotation point
draw_axes(red,green,blue);
endfig;
enddef;
%%\newpage
% Standard image 3: this is an example and may be adapted.
% |name_a|, |name_b| and |name_c| are object instances.
def one_image_three_objects(expr name_a,name_b,name_c,i,a,rd,ang)=
beginfig(i);
set_point(Obs,-rd*cosd(a*ang),-rd*sind(a*ang),1);
Obs_phi:=90;Obs_dist:=2;h_field:=100;v_field:=150;
point_of_view_obj(name_a,1,Obs_phi);% fix point 1 of object |name_a|
draw_obj(name_a);draw_obj(name_b);draw_obj(name_c);
v_a:=new_vect;
vect_def(v_a,.03*cosd(-a*ang+90),.03*sind(-a*ang+90),0);
translate_obj(name_c,v_a);
free_vect(v_a);
rotate_obj_pv(name_a,1,vect_I,ang);
rotate_obj_pv(name_b,13,vect_J,-ang);
%|rotate_obj_pp(name_b,13,7,-ang);|
draw_point(name_a,1);% show the rotation point
draw_axes(red,green,blue);
endfig;
enddef;
% Standard image 4: this is an example and may be adapted.
% |name_a| and |name_b| are object instances.
def one_image_two_identical_objects(expr name_a,name_b,i,a,rd,ang)=
beginfig(i);
set_point(Obs,-rd*cosd(a*ang),-rd*sind(a*ang),2);
Obs_phi:=90;Obs_dist:=2;
point_of_view_obj(name_a,1,Obs_phi);% fix point 1 of object |name_a|
draw_obj(name_a);draw_obj(name_b);
rotate_obj_pv(name_a,1,vect_I,ang);
rotate_obj_pv(name_b,13,vect_J,-ang);
%|rotate_obj_pp(name_a,13,7,-ang);|
draw_point(name_a,1);% show the rotation point
draw_axes(red,green,blue);
endfig;
enddef;
%%\newpage
% An animation is a series of images, and these series are produced here.
% Standard animation 1
% |name| is a class name
def animate_object(expr name,imin,imax,index)=
numeric ang;ang=360/(imax-imin+1);
assign_obj("obj",name);
for i:=imin upto imax:one_image("obj",i+index,i,5,ang);endfor;
show_animation_bbox;
enddef;
% Standard animation 2
% |name_a| and |name_b| are class names
def animate_two_objects(expr name_a,name_b,imin,imax,index)=
numeric ang;ang=360/(imax-imin+1);