-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathflockingGNN.py
1258 lines (1063 loc) · 50.9 KB
/
flockingGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# 2020/01/01~
# Fernando Gama, fgama@seas.upenn.edu
# Luana Ruiz, rubruiz@seas.upenn.edu
# Kate Tolstaya, eig@seas.upenn.edu
# Learn decentralized controllers for flocking. There is a team of robots that
# start flying at random velocities and we want them to coordinate so that they
# can fly together while avoiding collisions. We learn a decentralized
# controller by using imitation learning.
# In this simulation, the number of agents is fixed for training, but can be
# set to a different number for testing.
# Outputs:
# - Text file with all the hyperparameters selected for the run and the
# corresponding results (hyperparameters.txt)
# - Pickle file with the random seeds of both torch and numpy for accurate
# reproduction of results (randomSeedUsed.pkl)
# - The parameters of the trained models, for both the Best and the Last
# instance of each model (savedModels/)
# - The figures of loss and evaluation through the training iterations for
# each model (figs/ and trainVars/)
# - Videos for some of the trajectories in the dataset, following the optimal
# centralized controller (datasetTrajectories/)
# - Videos for some of the learned trajectories following the controles
# learned by each model (learnedTrajectories/)
#%%##################################################################
# #
# IMPORTING #
# #
#####################################################################
#\\\ Standard libraries:
import os
import numpy as np
import matplotlib
matplotlib.rcParams['text.usetex'] = True
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['text.latex.preamble']=[r'\usepackage{amsmath}']
import matplotlib.pyplot as plt
import pickle
import datetime
from copy import deepcopy
import torch; torch.set_default_dtype(torch.float64)
import torch.nn as nn
import torch.optim as optim
#\\\ Own libraries:
import alegnn.utils.dataTools as dataTools
import alegnn.utils.graphML as gml
import alegnn.modules.architecturesTime as architTime
import alegnn.modules.model as model
import alegnn.modules.training as training
import alegnn.modules.evaluation as evaluation
#\\\ Separate functions:
from alegnn.utils.miscTools import writeVarValues
from alegnn.utils.miscTools import saveSeed
# Start measuring time
startRunTime = datetime.datetime.now()
#%%##################################################################
# #
# SETTING PARAMETERS #
# #
#####################################################################
thisFilename = 'flockingGNN' # This is the general name of all related files
nAgents = 50 # Number of agents at training time
saveDirRoot = 'experiments' # In this case, relative location
saveDir = os.path.join(saveDirRoot, thisFilename) # Dir where to save all
# the results from each run
#\\\ Create .txt to store the values of the setting parameters for easier
# reference when running multiple experiments
today = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
# Append date and time of the run to the directory, to avoid several runs of
# overwritting each other.
saveDir = saveDir + '-%03d-' % nAgents + today
# Create directory
if not os.path.exists(saveDir):
os.makedirs(saveDir)
# Create the file where all the (hyper)parameters and results will be saved.
varsFile = os.path.join(saveDir,'hyperparameters.txt')
with open(varsFile, 'w+') as file:
file.write('%s\n\n' % datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))
#\\\ Save seeds for reproducibility
# PyTorch seeds
torchState = torch.get_rng_state()
torchSeed = torch.initial_seed()
# Numpy seeds
numpyState = np.random.RandomState().get_state()
# Collect all random states
randomStates = []
randomStates.append({})
randomStates[0]['module'] = 'numpy'
randomStates[0]['state'] = numpyState
randomStates.append({})
randomStates[1]['module'] = 'torch'
randomStates[1]['state'] = torchState
randomStates[1]['seed'] = torchSeed
# This list and dictionary follows the format to then be loaded, if needed,
# by calling the loadSeed function in Utils.miscTools
saveSeed(randomStates, saveDir)
########
# DATA #
########
useGPU = True # If true, and GPU is available, use it.
nAgentsMax = nAgents # Maximum number of agents to test the solution
nSimPoints = 1 # Number of simulations between nAgents and nAgentsMax
# At test time, the architectures trained on nAgents will be tested on a
# varying number of agents, starting at nAgents all the way to nAgentsMax;
# the number of simulations for different number of agents is given by
# nSimPoints, i.e. if nAgents = 50, nAgentsMax = 100 and nSimPoints = 3,
# then the architectures are trained on 50, 75 and 100 agents.
commRadius = 2. # Communication radius
repelDist = 1. # Minimum distance before activating repelling potential
nTrain = 400 # Number of training samples
nValid = 20 # Number of valid samples
nTest = 20 # Number of testing samples
duration = 2. # Duration of the trajectory
samplingTime = 0.01 # Sampling time
initGeometry = 'circular' # Geometry of initial positions
initVelValue = 3. # Initial velocities are samples from an interval
# [-initVelValue, initVelValue]
initMinDist = 0.1 # No two agents are located at a distance less than this
accelMax = 10. # This is the maximum value of acceleration allowed
nRealizations = 10 # Number of data realizations
# How many times we repeat the experiment
#\\\ Save values:
writeVarValues(varsFile,
{'nAgents': nAgents,
'nAgentsMax': nAgentsMax,
'nSimPoints': nSimPoints,
'commRadius': commRadius,
'repelDist': repelDist,
'nTrain': nTrain,
'nValid': nValid,
'nTest': nTest,
'duration': duration,
'samplingTime': samplingTime,
'initGeometry': initGeometry,
'initVelValue': initVelValue,
'initMinDist': initMinDist,
'accelMax': accelMax,
'nRealizations': nRealizations,
'useGPU': useGPU})
############
# TRAINING #
############
#\\\ Individual model training options
optimAlg = 'ADAM' # Options: 'SGD', 'ADAM', 'RMSprop'
learningRate = 0.0005 # In all options
beta1 = 0.9 # beta1 if 'ADAM', alpha if 'RMSprop'
beta2 = 0.999 # ADAM option only
#\\\ Loss function choice
lossFunction = nn.MSELoss
#\\\ Training algorithm
trainer = training.TrainerFlocking
#\\\ Evaluation algorithm
evaluator = evaluation.evaluateFlocking
#\\\ Overall training options
probExpert = 0.993 # Probability of choosing the expert in DAGger
#DAGgerType = 'fixedBatch' # 'replaceTimeBatch', 'randomEpoch'
nEpochs = 30 # Number of epochs
batchSize = 20 # Batch size
doLearningRateDecay = False # Learning rate decay
learningRateDecayRate = 0.9 # Rate
learningRateDecayPeriod = 1 # How many epochs after which update the lr
validationInterval = 5 # How many training steps to do the validation
#\\\ Save values
writeVarValues(varsFile,
{'optimizationAlgorithm': optimAlg,
'learningRate': learningRate,
'beta1': beta1,
'beta2': beta2,
'lossFunction': lossFunction,
'trainer': trainer,
'evaluator': evaluator,
'probExpert': probExpert,
'nEpochs': nEpochs,
'batchSize': batchSize,
'doLearningRateDecay': doLearningRateDecay,
'learningRateDecayRate': learningRateDecayRate,
'learningRateDecayPeriod': learningRateDecayPeriod,
'validationInterval': validationInterval})
#################
# ARCHITECTURES #
#################
# In this section, we determine the (hyper)parameters of models that we are
# going to train. This only sets the parameters. The architectures need to be
# created later below. Do not forget to add the name of the architecture
# to modelList.
# If the hyperparameter dictionary is called 'hParams' + name, then it can be
# picked up immediately later on, and there's no need to recode anything after
# the section 'Setup' (except for setting the number of nodes in the 'N'
# variable after it has been coded).
# The name of the keys in the hyperparameter dictionary have to be the same
# as the names of the variables in the architecture call, because they will
# be called by unpacking the dictionary.
#nFeatures = 32 # Number of features in all architectures
#nFilterTaps = 4 # Number of filter taps in all architectures
# [[The hyperparameters are for each architecture, and they were chosen
# following the results of the hyperparameter search]]
nonlinearityHidden = torch.tanh
nonlinearityOutput = torch.tanh
nonlinearity = nn.Tanh # Chosen nonlinearity for nonlinear architectures
# Select desired architectures
doLocalFlt = True # Local filter (no nonlinearity)
doLocalGNN = True # Local GNN (include nonlinearity)
doDlAggGNN = True
doGraphRNN = True
modelList = []
#\\\\\\\\\\\\\\\\\\
#\\\ FIR FILTER \\\
#\\\\\\\\\\\\\\\\\\
if doLocalFlt:
#\\\ Basic parameters for the Local Filter architecture
hParamsLocalFlt = {} # Hyperparameters (hParams) for the Local Filter
hParamsLocalFlt['name'] = 'LocalFlt'
# Chosen architecture
hParamsLocalFlt['archit'] = architTime.LocalGNN_DB
hParamsLocalFlt['device'] = 'cuda:0' \
if (useGPU and torch.cuda.is_available()) \
else 'cpu'
# Graph convolutional parameters
hParamsLocalFlt['dimNodeSignals'] = [6, 32] # Features per layer
hParamsLocalFlt['nFilterTaps'] = [4] # Number of filter taps
hParamsLocalFlt['bias'] = True # Decide whether to include a bias term
# Nonlinearity
hParamsLocalFlt['nonlinearity'] = gml.NoActivation # Selected nonlinearity
# is affected by the summary
# Readout layer: local linear combination of features
hParamsLocalFlt['dimReadout'] = [2] # Dimension of the fully connected
# layers after the FIR filter layers (map); this fully connected layer
# is applied only at each node, without any further exchanges nor
# considering all nodes at once, making the architecture entirely
# local.
# Graph structure
hParamsLocalFlt['dimEdgeFeatures'] = 1 # Scalar edge weights
#\\\ Save Values:
writeVarValues(varsFile, hParamsLocalFlt)
modelList += [hParamsLocalFlt['name']]
#\\\\\\\\\\\\\\\\\
#\\\ LOCAL GNN \\\
#\\\\\\\\\\\\\\\\\
if doLocalGNN:
#\\\ Basic parameters for the Local GNN architecture
hParamsLocalGNN = {} # Hyperparameters (hParams) for the Local GNN (LclGNN)
hParamsLocalGNN['name'] = 'LocalGNN'
# Chosen architecture
hParamsLocalGNN['archit'] = architTime.LocalGNN_DB
hParamsLocalGNN['device'] = 'cuda:0' \
if (useGPU and torch.cuda.is_available()) \
else 'cpu'
# Graph convolutional parameters
hParamsLocalGNN['dimNodeSignals'] = [6, 64] # Features per layer
hParamsLocalGNN['nFilterTaps'] = [3] # Number of filter taps
hParamsLocalGNN['bias'] = True # Decide whether to include a bias term
# Nonlinearity
hParamsLocalGNN['nonlinearity'] = nonlinearity # Selected nonlinearity
# is affected by the summary
# Readout layer: local linear combination of features
hParamsLocalGNN['dimReadout'] = [2] # Dimension of the fully connected
# layers after the GCN layers (map); this fully connected layer
# is applied only at each node, without any further exchanges nor
# considering all nodes at once, making the architecture entirely
# local.
# Graph structure
hParamsLocalGNN['dimEdgeFeatures'] = 1 # Scalar edge weights
#\\\ Save Values:
writeVarValues(varsFile, hParamsLocalGNN)
modelList += [hParamsLocalGNN['name']]
#\\\\\\\\\\\\\\\\\\\\\\\
#\\\ AGGREGATION GNN \\\
#\\\\\\\\\\\\\\\\\\\\\\\
if doDlAggGNN:
#\\\ Basic parameters for the Aggregation GNN architecture
hParamsDAGNN1Ly = {} # Hyperparameters (hParams) for the Local GNN (LclGNN)
hParamsDAGNN1Ly['name'] = 'DAGNN1Ly'
# Chosen architecture
hParamsDAGNN1Ly['archit'] = architTime.AggregationGNN_DB
hParamsDAGNN1Ly['device'] = 'cuda:0' \
if (useGPU and torch.cuda.is_available()) \
else 'cpu'
# Graph convolutional parameters
hParamsDAGNN1Ly['dimFeatures'] = [6] # Features per layer
hParamsDAGNN1Ly['nFilterTaps'] = [] # Number of filter taps
hParamsDAGNN1Ly['bias'] = True # Decide whether to include a bias term
# Nonlinearity
hParamsDAGNN1Ly['nonlinearity'] = nonlinearity # Selected nonlinearity
# is affected by the summary
hParamsDAGNN1Ly['poolingFunction'] = gml.NoPool
hParamsDAGNN1Ly['poolingSize'] = []
# Readout layer: local linear combination of features
hParamsDAGNN1Ly['dimReadout'] = [64, 2] # Dimension of the fully connected
# layers after the GCN layers (map); this fully connected layer
# is applied only at each node, without any further exchanges nor
# considering all nodes at once, making the architecture entirely
# local.
# Graph structure
hParamsDAGNN1Ly['dimEdgeFeatures'] = 1 # Scalar edge weights
hParamsDAGNN1Ly['nExchanges'] = 2 - 1
#\\\ Save Values:
writeVarValues(varsFile, hParamsDAGNN1Ly)
modelList += [hParamsDAGNN1Ly['name']]
#\\\\\\\\\\\\\\\\\
#\\\ GRAPH RNN \\\
#\\\\\\\\\\\\\\\\\
if doGraphRNN:
#\\\ Basic parameters for the Graph RNN architecture
hParamsGraphRNN = {} # Hyperparameters (hParams) for the Local GNN (LclGNN)
hParamsGraphRNN['name'] = 'GraphRNN'
# Chosen architecture
hParamsGraphRNN['archit'] = architTime.GraphRecurrentNN_DB
hParamsGraphRNN['device'] = 'cuda:0' \
if (useGPU and torch.cuda.is_available()) \
else 'cpu'
# Graph convolutional parameters
hParamsGraphRNN['dimInputSignals'] = 6 # Features per layer
hParamsGraphRNN['dimOutputSignals'] = 64
hParamsGraphRNN['dimHiddenSignals'] = 64
hParamsGraphRNN['nFilterTaps'] = [3] * 2 # Number of filter taps
hParamsGraphRNN['bias'] = True # Decide whether to include a bias term
# Nonlinearity
hParamsGraphRNN['nonlinearityHidden'] = nonlinearityHidden
hParamsGraphRNN['nonlinearityOutput'] = nonlinearityOutput
hParamsGraphRNN['nonlinearityReadout'] = nonlinearity
# Readout layer: local linear combination of features
hParamsGraphRNN['dimReadout'] = [2] # Dimension of the fully connected
# layers after the GCN layers (map); this fully connected layer
# is applied only at each node, without any further exchanges nor
# considering all nodes at once, making the architecture entirely
# local.
# Graph structure
hParamsGraphRNN['dimEdgeFeatures'] = 1 # Scalar edge weights
#\\\ Save Values:
writeVarValues(varsFile, hParamsGraphRNN)
modelList += [hParamsGraphRNN['name']]
###########
# LOGGING #
###########
# Options:
doPrint = True # Decide whether to print stuff while running
doLogging = False # Log into tensorboard
doSaveVars = True # Save (pickle) useful variables
doFigs = True # Plot some figures (this only works if doSaveVars is True)
# Parameters:
printInterval = 1 # After how many training steps, print the partial results
# 0 means to never print partial results while training
xAxisMultiplierTrain = 10 # How many training steps in between those shown in
# the plot, i.e., one training step every xAxisMultiplierTrain is shown.
xAxisMultiplierValid = 2 # How many validation steps in between those shown,
# same as above.
figSize = 5 # Overall size of the figure that contains the plot
lineWidth = 2 # Width of the plot lines
markerShape = 'o' # Shape of the markers
markerSize = 3 # Size of the markers
videoSpeed = 0.5 # Slow down by half to show transitions
nVideos = 3 # Number of videos to save
#\\\ Save values:
writeVarValues(varsFile,
{'doPrint': doPrint,
'doLogging': doLogging,
'doSaveVars': doSaveVars,
'doFigs': doFigs,
'saveDir': saveDir,
'printInterval': printInterval,
'figSize': figSize,
'lineWidth': lineWidth,
'markerShape': markerShape,
'markerSize': markerSize,
'videoSpeed': videoSpeed,
'nVideos': nVideos})
#%%##################################################################
# #
# SETUP #
# #
#####################################################################
#\\\ If CUDA is selected, empty cache:
if useGPU and torch.cuda.is_available():
torch.cuda.empty_cache()
#\\\ Notify of processing units
if doPrint:
print("Selected devices:")
for thisModel in modelList:
hParamsDict = eval('hParams' + thisModel)
print("\t%s: %s" % (thisModel, hParamsDict['device']))
#\\\ Logging options
if doLogging:
# If logging is on, load the tensorboard visualizer and initialize it
from alegnn.utils.visualTools import Visualizer
logsTB = os.path.join(saveDir, 'logsTB')
logger = Visualizer(logsTB, name='visualResults')
#\\\ Number of agents at test time
nAgentsTest = np.linspace(nAgents, nAgentsMax, num = nSimPoints,dtype = np.int)
nAgentsTest = np.unique(nAgentsTest).tolist()
nSimPoints = len(nAgentsTest)
writeVarValues(varsFile, {'nAgentsTest': nAgentsTest}) # Save list
#\\\ Save variables during evaluation.
# We will save all the evaluations obtained for each of the trained models.
# The first list is one for each value of nAgents that we want to simulate
# (i.e. these are test results, so if we test for different number of agents,
# we need to save the results for each of them). Each element in the list will
# be a dictionary (i.e. for each testing case, we have a dictionary).
# It basically is a dictionary, containing a list. The key of the
# dictionary determines the model, then the first list index determines
# which split realization. Then, this will be converted to numpy to compute
# mean and standard deviation (across the split dimension).
# We're saving the cost of the full trajectory, as well as the cost at the end
# instant.
costBestFull = [None] * nSimPoints
costBestEnd = [None] * nSimPoints
costLastFull = [None] * nSimPoints
costLastEnd = [None] * nSimPoints
costOptFull = [None] * nSimPoints
costOptEnd = [None] * nSimPoints
for n in range(nSimPoints):
costBestFull[n] = {} # Accuracy for the best model (full trajectory)
costBestEnd[n] = {} # Accuracy for the best model (end time)
costLastFull[n] = {} # Accuracy for the last model
costLastEnd[n] = {} # Accuracy for the last model
for thisModel in modelList: # Create an element for each split realization,
costBestFull[n][thisModel] = [None] * nRealizations
costBestEnd[n][thisModel] = [None] * nRealizations
costLastFull[n][thisModel] = [None] * nRealizations
costLastEnd[n][thisModel] = [None] * nRealizations
costOptFull[n] = [None] * nRealizations # Accuracy for optimal controller
costOptEnd[n] = [None] * nRealizations # Accuracy for optimal controller
if doFigs:
#\\\ SAVE SPACE:
# Create the variables to save all the realizations. This is, again, a
# dictionary, where each key represents a model, and each model is a list
# for each data split.
# Each data split, in this case, is not a scalar, but a vector of
# length the number of training steps (or of validation steps)
lossTrain = {}
evalValid = {}
# Initialize the splits dimension
for thisModel in modelList:
lossTrain[thisModel] = [None] * nRealizations
evalValid[thisModel] = [None] * nRealizations
####################
# TRAINING OPTIONS #
####################
# Training phase. It has a lot of options that are input through a
# dictionary of arguments.
# The value of these options was decided above with the rest of the parameters.
# This just creates a dictionary necessary to pass to the train function.
trainingOptions = {}
if doLogging:
trainingOptions['logger'] = logger
if doSaveVars:
trainingOptions['saveDir'] = saveDir
if doPrint:
trainingOptions['printInterval'] = printInterval
if doLearningRateDecay:
trainingOptions['learningRateDecayRate'] = learningRateDecayRate
trainingOptions['learningRateDecayPeriod'] = learningRateDecayPeriod
trainingOptions['validationInterval'] = validationInterval
# And in case each model has specific training options (aka 'DAGger'), then
# we create a separate dictionary per model.
trainingOptsPerModel= {}
# Create relevant dirs: we need directories to save the videos of the dataset
# that involve the optimal centralized controllers, and we also need videos
# for the learned trajectory of each model. Note that all of these depend on
# each realization, so we will be saving videos for each realization.
# Here, we create all those directories.
datasetTrajectoryDir = os.path.join(saveDir,'datasetTrajectories')
if not os.path.exists(datasetTrajectoryDir):
os.makedirs(datasetTrajectoryDir)
datasetTrainTrajectoryDir = os.path.join(datasetTrajectoryDir,'train')
if not os.path.exists(datasetTrainTrajectoryDir):
os.makedirs(datasetTrainTrajectoryDir)
datasetTestTrajectoryDir = os.path.join(datasetTrajectoryDir,'test')
if not os.path.exists(datasetTestTrajectoryDir):
os.makedirs(datasetTestTrajectoryDir)
datasetTestAgentTrajectoryDir = [None] * nSimPoints
for n in range(nSimPoints):
datasetTestAgentTrajectoryDir[n] = os.path.join(datasetTestTrajectoryDir,
'%03d' % nAgentsTest[n])
if nRealizations > 1:
datasetTrainTrajectoryDirOrig = datasetTrainTrajectoryDir
datasetTestAgentTrajectoryDirOrig = datasetTestAgentTrajectoryDir.copy()
#%%##################################################################
# #
# DATA SPLIT REALIZATION #
# #
#####################################################################
# Start generating a new data realization for each number of total realizations
for realization in range(nRealizations):
# On top of the rest of the training options, we pass the identification
# of this specific data split realization.
if nRealizations > 1:
trainingOptions['realizationNo'] = realization
# Create new directories (specific for this realization)
datasetTrainTrajectoryDir = os.path.join(datasetTrainTrajectoryDirOrig,
'%03d' % realization)
if not os.path.exists(datasetTrainTrajectoryDir):
os.makedirs(datasetTrainTrajectoryDir)
for n in range(nSimPoints):
datasetTestAgentTrajectoryDir[n] = os.path.join(
datasetTestAgentTrajectoryDirOrig[n],
'%03d' % realization)
if not os.path.exists(datasetTestAgentTrajectoryDir[n]):
os.makedirs(datasetTestAgentTrajectoryDir[n])
if doPrint:
print("", flush = True)
#%%##################################################################
# #
# DATA HANDLING #
# #
#####################################################################
############
# DATASETS #
############
if doPrint:
print("Generating data", end = '')
if nRealizations > 1:
print(" for realization %d" % realization, end = '')
print("...", flush = True)
# Generate the dataset
data = dataTools.Flocking(
# Structure
nAgents,
commRadius,
repelDist,
# Samples
nTrain,
nValid,
1, # We do not care about testing, we will re-generate the
# dataset for testing
# Time
duration,
samplingTime,
# Initial conditions
initGeometry = initGeometry,
initVelValue = initVelValue,
initMinDist = initMinDist,
accelMax = accelMax)
###########
# PREVIEW #
###########
if doPrint:
print("Preview data", end = '')
if nRealizations > 1:
print(" for realization %d" % realization, end = '')
print("...", flush = True)
# Generate the videos
data.saveVideo(datasetTrainTrajectoryDir, # Where to save them
data.pos['train'], # Which positions to plot
nVideos, # Number of videos to create
commGraph = data.commGraph['train'], # Graph to plot
vel = data.vel['train'], # Velocity arrows to plot
videoSpeed = videoSpeed) # Change speed of animation
#%%##################################################################
# #
# MODELS INITIALIZATION #
# #
#####################################################################
# This is the dictionary where we store the models (in a model.Model
# class).
modelsGNN = {}
# If a new model is to be created, it should be called for here.
if doPrint:
print("Model initialization...", flush = True)
for thisModel in modelList:
# Get the corresponding parameter dictionary
hParamsDict = deepcopy(eval('hParams' + thisModel))
# and training options
trainingOptsPerModel[thisModel] = deepcopy(trainingOptions)
# Now, this dictionary has all the hyperparameters that we need to pass
# to the architecture, but it also has the 'name' and 'archit' that
# we do not need to pass them. So we are going to get them out of
# the dictionary
thisName = hParamsDict.pop('name')
callArchit = hParamsDict.pop('archit')
thisDevice = hParamsDict.pop('device')
# If there's a specific DAGger type, pop it out now
if 'DAGgerType' in hParamsDict.keys() \
and 'probExpert' in hParamsDict.keys():
trainingOptsPerModel[thisModel]['probExpert'] = \
hParamsDict.pop('probExpert')
trainingOptsPerModel[thisModel]['DAGgerType'] = \
hParamsDict.pop('DAGgerType')
# If more than one graph or data realization is going to be carried out,
# we are going to store all of thos models separately, so that any of
# them can be brought back and studied in detail.
if nRealizations > 1:
thisName += 'G%02d' % realization
if doPrint:
print("\tInitializing %s..." % thisName,
end = ' ',flush = True)
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisOptimAlg = optimAlg
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
################
# ARCHITECTURE #
################
thisArchit = callArchit(**hParamsDict)
thisArchit.to(thisDevice)
#############
# OPTIMIZER #
#############
if thisOptimAlg == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate,
betas = (beta1, beta2))
elif thisOptimAlg == 'SGD':
thisOptim = optim.SGD(thisArchit.parameters(),
lr = learningRate)
elif thisOptimAlg == 'RMSprop':
thisOptim = optim.RMSprop(thisArchit.parameters(),
lr = learningRate, alpha = beta1)
########
# LOSS #
########
thisLossFunction = lossFunction()
###########
# TRAINER #
###########
thisTrainer = trainer
#############
# EVALUATOR #
#############
thisEvaluator = evaluator
#########
# MODEL #
#########
modelCreated = model.Model(thisArchit,
thisLossFunction,
thisOptim,
thisTrainer,
thisEvaluator,
thisDevice,
thisName,
saveDir)
modelsGNN[thisName] = modelCreated
writeVarValues(varsFile,
{'name': thisName,
'thisOptimizationAlgorithm': thisOptimAlg,
'thisTrainer': thisTrainer,
'thisEvaluator': thisEvaluator,
'thisLearningRate': thisLearningRate,
'thisBeta1': thisBeta1,
'thisBeta2': thisBeta2})
if doPrint:
print("OK")
#%%##################################################################
# #
# TRAINING #
# #
#####################################################################
############
# TRAINING #
############
print("")
for thisModel in modelsGNN.keys():
if doPrint:
print("Training model %s..." % thisModel)
for m in modelList:
if m in thisModel:
modelName = m
thisTrainVars = modelsGNN[thisModel].train(data,
nEpochs,
batchSize,
**trainingOptsPerModel[m])
if doFigs:
# Find which model to save the results (when having multiple
# realizations)
for m in modelList:
if m in thisModel:
lossTrain[m][realization] = thisTrainVars['lossTrain']
evalValid[m][realization] = thisTrainVars['evalValid']
# And we also need to save 'nBatch' but is the same for all models, so
if doFigs:
nBatches = thisTrainVars['nBatches']
#%%##################################################################
# #
# EVALUATION #
# #
#####################################################################
# Now that the model has been trained, we evaluate them on the test
# samples.
# We have two versions of each model to evaluate: the one obtained
# at the best result of the validation step, and the last trained model.
for n in range(nSimPoints):
if doPrint:
print("")
print("[%3d Agents] Generating test set" % nAgentsTest[n],
end = '')
if nRealizations > 1:
print(" for realization %d" % realization, end = '')
print("...", flush = True)
# Load the data, which will give a specific split
dataTest = dataTools.Flocking(
# Structure
nAgentsTest[n],
commRadius,
repelDist,
# Samples
1, # We don't care about training
1, # nor validation
nTest,
# Time
duration,
samplingTime,
# Initial conditions
initGeometry = initGeometry,
initVelValue = initVelValue,
initMinDist = initMinDist,
accelMax = accelMax)
###########
# OPTIMAL #
###########
#\\\ PREVIEW
#\\\\\\\\\\\
# Save videos for the optimal trajectories of the test set (before it
# was for the otpimal trajectories of the training set)
posTest = dataTest.getData('pos', 'test')
velTest = dataTest.getData('vel', 'test')
commGraphTest = dataTest.getData('commGraph', 'test')
if doPrint:
print("[%3d Agents] Preview data" % nAgentsTest[n], end = '')
if nRealizations > 1:
print(" for realization %d" % realization, end = '')
print("...", flush = True)
dataTest.saveVideo(datasetTestAgentTrajectoryDir[n],
posTest,
nVideos,
commGraph = commGraphTest,
vel = velTest,
videoSpeed = videoSpeed)
#\\\ EVAL
#\\\\\\\\
# Get the cost for the optimal trajectories
# Full trajectory
costOptFull[n][realization] = dataTest.evaluate(vel = velTest)
# Last time instant
costOptEnd[n][realization] = dataTest.evaluate(vel = velTest[:,-1:,:,:])
writeVarValues(varsFile,
{'costOptFull%03dR%02d' % (nAgentsTest[n],realization):
costOptFull[n][realization],
'costOptEnd%04dR%02d' % (nAgentsTest[n],realization):
costOptEnd[n][realization]})
del posTest, velTest, commGraphTest
##########
# MODELS #
##########
for thisModel in modelsGNN.keys():
if doPrint:
print("[%3d Agents] Evaluating model %s" % \
(nAgentsTest[n], thisModel), end = '')
if nRealizations > 1:
print(" for realization %d" % realization, end = '')
print("...", flush = True)
addKW = {}
addKW['nVideos'] = nVideos
addKW['graphNo'] = nAgentsTest[n]
if nRealizations > 1:
addKW['realizationNo'] = realization
thisEvalVars = modelsGNN[thisModel].evaluate(dataTest, **addKW)
thisCostBestFull = thisEvalVars['costBestFull']
thisCostBestEnd = thisEvalVars['costBestEnd']
thisCostLastFull = thisEvalVars['costLastFull']
thisCostLastEnd = thisEvalVars['costLastEnd']
# Save values
writeVarValues(varsFile,
{'costBestFull%s%03dR%02d' % \
(thisModel, nAgentsTest[n], realization):
thisCostBestFull,
'costBestEnd%s%04dR%02d' % \
(thisModel, nAgentsTest[n], realization):
thisCostBestEnd,
'costLastFull%s%03dR%02d' % \
(thisModel, nAgentsTest[n], realization):
thisCostLastFull,
'costLastEnd%s%04dR%02d' % \
(thisModel, nAgentsTest[n], realization):
thisCostLastEnd})
# Find which model to save the results (when having multiple
# realizations)
for m in modelList:
if m in thisModel:
costBestFull[n][m][realization] = thisCostBestFull
costBestEnd[n][m][realization] = thisCostBestEnd
costLastFull[n][m][realization] = thisCostLastFull
costLastEnd[n][m][realization] = thisCostLastEnd
############################
# FINAL EVALUATION RESULTS #
############################
meanCostBestFull = [None] * nSimPoints # Mean across data splits
meanCostBestEnd = [None] * nSimPoints # Mean across data splits
meanCostLastFull = [None] * nSimPoints # Mean across data splits
meanCostLastEnd = [None] * nSimPoints # Mean across data splits
stdDevCostBestFull = [None] * nSimPoints # Standard deviation across data splits
stdDevCostBestEnd = [None] * nSimPoints # Standard deviation across data splits
stdDevCostLastFull = [None] * nSimPoints # Standard deviation across data splits
stdDevCostLastEnd = [None] * nSimPoints # Standard deviation across data splits
meanCostOptFull = [None] * nSimPoints
stdDevCostOptFull = [None] * nSimPoints
meanCostOptEnd = [None] * nSimPoints
stdDevCostOptEnd = [None] * nSimPoints
for n in range(nSimPoints):
# Now that we have computed the accuracy of all runs, we can obtain a final
# result (mean and standard deviation)
meanCostBestFull[n] = {} # Mean across data splits
meanCostBestEnd[n] = {} # Mean across data splits
meanCostLastFull[n] = {} # Mean across data splits
meanCostLastEnd[n] = {} # Mean across data splits
stdDevCostBestFull[n] = {} # Standard deviation across data splits
stdDevCostBestEnd[n] = {} # Standard deviation across data splits
stdDevCostLastFull[n] = {} # Standard deviation across data splits
stdDevCostLastEnd[n] = {} # Standard deviation across data splits
if doPrint:
print("\n[%3d Agents] Final evaluations (%02d data splits)" % \
(nAgentsTest[n], nRealizations))
costOptFull[n] = np.array(costOptFull[n])
meanCostOptFull[n] = np.mean(costOptFull[n])
stdDevCostOptFull[n] = np.std(costOptFull[n])
costOptEnd[n] = np.array(costOptEnd[n])
meanCostOptEnd[n] = np.mean(costOptEnd[n])
stdDevCostOptEnd[n] = np.std(costOptEnd[n])
if doPrint:
print("\t%8s: %8.4f (+-%6.4f) [Optm/Full]" % (
'Optimal',
meanCostOptFull[n],
stdDevCostOptFull[n]))
print("\t%9s %8.4f (+-%6.4f) [Optm/End ]" % (
'',
meanCostOptEnd[n],
stdDevCostOptEnd[n]))