Skip to content

Latest commit

 

History

History
194 lines (150 loc) · 3.86 KB

Cheatsheet.md

File metadata and controls

194 lines (150 loc) · 3.86 KB

Cheatsheet

This cheatsheed contains some commands which we found useful during development. Some of the problems here are specific to our environment, the solutions might therefore not be generalisable and working in other environments.

Docker

To create the image of our package:

pipenv lock -r > requirements.txt
docker build -t occrp-document-classifier:0.1.0 .

Locking the requirements can be skipped, if the dependencies were not changed.



If error no space left on device

export TMPDIR=/data/dssg/occrp/data/docker


To access the container when it's running:

docker exec -it occrp-document-classifier:0.1.0 bash


To run a command (example here train-document-classifier) using the container and deleting the container after the run:

docker run -it --rm occrp-document-classifier:0.1.0 bash -c "python main.py train-document-classifier" 


Using docker with a volume connected to it:

docker run -v /data/dssg/occrp/data/:/data/dssg/occrp/data/ -it --rm occrp-document-classifier:0.1.0 bash -c "python main.py convert-all-to-jpg /data/dssg/occrp/data/temp /data/dssg/occrp/data/temp"

MLflow

Start the MLflow UI

mflow ui

The standard port for this is 5000. If it is run in Visual Studio Code, the IDE will by default forward the port. The UI will therefore be inspectable on http://127.0.0.1:5000.

Start the MLflow UI on a different port, e.g. 5001

mlflow ui --port 5001

Start the MLflow UI from the mlruns directory on our VM.

mlflow ui --backend-store-uri "/data/dssg/occrp/data/mlruns/"

Start MLflow in a tmux terminal to leave running in the background:

tmux new -s "MLflowUI"
mlflow ui --backend-store-uri "/data/dssg/occrp/data/mlruns/"
To exit without killing the tmux terminal press <Ctrl>-b, d

tmux

list all current tmux sessions

tmux ls

enter session named "MLflowUI"

tmux attach-session -t MLflowUI

Shell commands

Count how often a certain file exension is found in a directory and its subdirectories (also lists directories, confusingly)

ls -R | awk -F . '{print $NF}' | sort | uniq -c | sort -n -r | more

Save the results to a txt file:

ls -R | awk -F . '{print $NF}' | sort | uniq -c | sort -n -r | more > file_extensions.txt

The same in Windows PowerShell:

Get-Childitem -Recurse | WHERE { -NOT $_.PSIsContainer } | Group Extension -NoElement | Sort Count -Desc > FileExtensions.txt


Delete recursively all 1.jpg from current directory and subfolders

find . -name \*1.jpg -exec rm {} \;


Forward a port (useful if you don't use VS Code and want to inspect the MLflow UI running on the server), run this from your local machine:

ssh -L 5000:127.0.0.1:5000 username@10.30.40.120


Shell

If error

/bin/sh: error while loading shared libraries: libc.so.6: cannot change memory protections

run

restorecon -R -v $HOME/.local/share/containers


If error

no space left on device

run

export TMPDIR=/data/dssg/occrp/data/docker


Convert all pdf and tifs from our input folder to the output folder (execute from root folder of the project):

pipenv run python src/preprocessing/preprocessing_cli.py convert-all-to-jpg /data/dssg/occrp/data/input/document_classification_data/ /data/dssg/occrp/data/processed/


pytest

Running pytest:

pytest

Without warnings

pytest --disable-pytest-warnings

To check the coverage of pytest:

pytest --cov=src tests

VS Code

Increase width for columns when debugging data frames (not tested):

pd.options.display.max_colwidth = 400

Portainer

Start the portainer:

./portainer.sh

Example credentials:

User: admin
PW: admin123admin123

GPU

Run a command (example here train-document-classifier) via GPU:

./run_gpu_model.sh train-document-classifier