-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmulti_layer_perceptron.py
278 lines (234 loc) · 9.9 KB
/
multi_layer_perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
from enum import Enum
import numpy as np
import tensorflow as tf
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import NearMiss
from neuraxle.base import Identity, BaseStep, NonFittableMixin
from neuraxle.hyperparams.distributions import Choice, LogUniform, RandInt, FixedHyperparameter, Uniform
from neuraxle.hyperparams.space import HyperparameterSamples, HyperparameterSpace
from neuraxle.metaopt.auto_ml import AutoML, RandomSearchHyperparameterSelectionStrategy, ValidationSplitter, \
InMemoryHyperparamsRepository
from neuraxle.metaopt.callbacks import ScoringCallback, MetricCallback
from neuraxle.pipeline import Pipeline, MiniBatchSequentialPipeline
from neuraxle.steps.data import DataShuffler
from neuraxle.steps.flow import TrainOnlyWrapper
from neuraxle.steps.numpy import OneHotEncoder
from neuraxle_tensorflow.tensorflow_v2 import Tensorflow2ModelStep
from pandas import read_csv
from tensorflow_core.python.keras.engine.input_layer import Input
from tensorflow_core.python.keras.layers.core import Dense
from tensorflow_core.python.keras.losses import sparse_categorical_crossentropy
from tensorflow_core.python.keras.models import Model
from tensorflow_core.python.keras.optimizer_v2.adagrad import Adagrad
from tensorflow_core.python.keras.optimizer_v2.adamax import Adamax
from tensorflow_core.python.keras.optimizer_v2.ftrl import Ftrl
from tensorflow_core.python.keras.optimizer_v2.gradient_descent import SGD
from tensorflow_core.python.keras.optimizer_v2.rmsprop import RMSProp
from tensorflow_core.python.training.adam import AdamOptimizer
from column_transformer_input_output import ColumnTransformerInputOutput
from early_stopping_callback import EarlyStoppingCallback
from metrics import precision_score_weighted, recall_score_weighted, f1_score_weighted, \
classificaiton_report_imbalanced_metric
from output_transformer_wrapper import OutputTransformerWrapper
import matplotlib.pyplot as plt
def create_model(step: Tensorflow2ModelStep):
"""
Create a TensorFlow v2 Multi-Layer-Perceptron Model.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:return: TensorFlow v2 Keras model
"""
# shape: (batch_size, input_dim)
inputs = Input(
shape=(step.hyperparams['input_dim']),
batch_size=None,
dtype=tf.dtypes.float32,
name='inputs',
)
dense_layers = [
Dense(
units=step.hyperparams['hidden_dim'],
kernel_initializer=step.hyperparams['kernel_initializer'],
activation=step.hyperparams['activation'],
input_shape=(step.hyperparams['input_dim'],)
)
]
hidden_dim = step.hyperparams['hidden_dim']
for i in range(step.hyperparams['n_dense_layers'] - 1):
hidden_dim *= step.hyperparams['hidden_dim_layer_multiplier']
dense_layers.append(Dense(
units=int(hidden_dim),
activation=step.hyperparams['activation'],
kernel_initializer=step.hyperparams['kernel_initializer']
))
for layer in dense_layers:
outputs = layer(inputs)
softmax_layer = Dense(step.hyperparams['n_classes'], activation='softmax')
outputs = softmax_layer(outputs)
return Model(inputs=inputs, outputs=outputs)
def create_loss(step: Tensorflow2ModelStep, expected_outputs, predicted_outputs):
"""
Create a TensorFlow v2 loss
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:return: TensorFlow v2 Keras loss
"""
return sparse_categorical_crossentropy(
y_true=expected_outputs,
y_pred=predicted_outputs,
from_logits=False,
axis=-1
)
class OPTIMIZERS(Enum):
SGD = 'sgd'
ADAM = 'adam'
ADAGRAD = 'adagrad'
ADAMAX = 'adamax'
FTRL = 'ftrl'
NADAM = 'nadam'
RMSPROP = 'rms_prop'
class ACTIVATIONS(Enum):
RELU = 'relu'
TANH = 'tanh'
SIGMOID = 'sigmoid'
LEAKY_RELU = 'leaky_relu'
ELU = 'elu'
PRELU = 'prelu'
class KERNEL_INITIALIZERS(Enum):
GLOROT_NORMAL = 'glorot_normal'
GLOROT_UNIFORM = 'glorot_uniform'
HE_UNIFORM = 'he_uniform'
def create_optimizer(step: Tensorflow2ModelStep):
"""
Create a TensorFlow v2 optimizer.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:return: TensorFlow v2 optimizer
"""
if step.hyperparams['optimizer'] == 'sgd':
return SGD(learning_rate=step.hyperparams['learning_rate'])
if step.hyperparams['optimizer'] == 'adam':
return AdamOptimizer(learning_rate=step.hyperparams['learning_rate'])
if step.hyperparams['optimizer'] == 'adagrad':
return Adagrad(learning_rate=step.hyperparams['learning_rate'])
if step.hyperparams['optimizer'] == 'adamax':
return Adamax(learning_rate=step.hyperparams['learning_rate'])
if step.hyperparams['optimizer'] == 'ftrl':
return Ftrl(learning_rate=step.hyperparams['learning_rate'])
if step.hyperparams['optimizer'] == 'nadam':
return Ftrl(learning_rate=step.hyperparams['learning_rate'])
if step.hyperparams['optimizer'] == 'rms_prop':
return RMSProp(learning_rate=step.hyperparams['learning_rate'])
return AdamOptimizer(learning_rate=step.hyperparams['learning_rate'])
class ToNumpy(NonFittableMixin, BaseStep):
def __init__(self, dtype):
NonFittableMixin.__init__(self)
BaseStep.__init__(self)
self.dtype = dtype
def transform(self, data_inputs):
return data_inputs.astype(self.dtype)
class ExpandDim(NonFittableMixin, BaseStep):
def transform(self, data_inputs):
return np.expand_dims(data_inputs, axis=-1)
class PlotDistribution(NonFittableMixin, BaseStep):
def __init__(self, column):
BaseStep.__init__(self)
NonFittableMixin.__init__(self)
self.column = column
def transform(self, data_inputs):
if not os.path.exists('plots'):
os.makedirs('plots')
plt.hist(data_inputs[:, self.column])
plt.savefig(os.path.join('plots', self.name))
plt.close()
return data_inputs
class Resample(NonFittableMixin, BaseStep):
def __init__(self, column):
BaseStep.__init__(self)
NonFittableMixin.__init__(self)
self.column = column
def transform(self, data_inputs):
NearMiss()
SMOTE()
return data_inputs
def main():
def accuracy(data_inputs, expected_outputs):
return np.mean(np.argmax(np.array(data_inputs), axis=1) == np.argmax(np.array(expected_outputs), axis=1))
# load the dataset
df = read_csv('data/winequality-white.csv', sep=';')
data_inputs = df.values
data_inputs[:, -1] = data_inputs[:, -1] - 1
n_features = data_inputs.shape[1] - 1
n_classes = 10
p = Pipeline([
TrainOnlyWrapper(DataShuffler()),
ColumnTransformerInputOutput(
input_columns=[(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ToNumpy(np.float32)
)],
output_columns=[(11, Identity())]
),
OutputTransformerWrapper(PlotDistribution(column=-1)),
MiniBatchSequentialPipeline([
Tensorflow2ModelStep(
create_model=create_model,
create_loss=create_loss,
create_optimizer=create_optimizer
) \
.set_hyperparams(HyperparameterSamples({
'n_dense_layers': 2,
'input_dim': n_features,
'optimizer': 'adam',
'activation': 'relu',
'kernel_initializer': 'he_uniform',
'learning_rate': 0.01,
'hidden_dim': 20,
'n_classes': 3
})).set_hyperparams_space(HyperparameterSpace({
'n_dense_layers': RandInt(2, 4),
'hidden_dim_layer_multiplier': Uniform(0.30, 1),
'input_dim': FixedHyperparameter(n_features),
'optimizer': Choice([
OPTIMIZERS.ADAM.value,
OPTIMIZERS.SGD.value,
OPTIMIZERS.ADAGRAD.value
]),
'activation': Choice([
ACTIVATIONS.RELU.value,
ACTIVATIONS.TANH.value,
ACTIVATIONS.SIGMOID.value,
ACTIVATIONS.ELU.value,
]),
'kernel_initializer': Choice([
KERNEL_INITIALIZERS.GLOROT_NORMAL.value,
KERNEL_INITIALIZERS.GLOROT_UNIFORM.value,
KERNEL_INITIALIZERS.HE_UNIFORM.value
]),
'learning_rate': LogUniform(0.005, 0.01),
'hidden_dim': RandInt(3, 80),
'n_classes': FixedHyperparameter(n_classes)
}))
], batch_size=33),
OutputTransformerWrapper(Pipeline([
ExpandDim(),
OneHotEncoder(nb_columns=n_classes, name='classes')
]))
])
auto_ml = AutoML(
pipeline=p,
hyperparams_repository=InMemoryHyperparamsRepository(cache_folder='trials'),
hyperparams_optimizer=RandomSearchHyperparameterSelectionStrategy(),
validation_splitter=ValidationSplitter(test_size=0.30),
scoring_callback=ScoringCallback(accuracy, higher_score_is_better=True),
callbacks=[
MetricCallback(name='classification_report_imbalanced_metric', metric_function=classificaiton_report_imbalanced_metric, higher_score_is_better=True),
MetricCallback(name='f1', metric_function=f1_score_weighted, higher_score_is_better=True),
MetricCallback(name='recall', metric_function=recall_score_weighted, higher_score_is_better=True),
MetricCallback(name='precision', metric_function=precision_score_weighted, higher_score_is_better=True),
EarlyStoppingCallback(max_epochs_without_improvement=3)
],
n_trials=200,
refit_trial=True,
epochs=75
)
auto_ml = auto_ml.fit(data_inputs=data_inputs)
if __name__ == '__main__':
main()