-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
174 lines (128 loc) · 5.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding: utf-8
import argparse as ap
import json
import numpy as np
import os
import data_helpers
from model import build_compiled_model
from w2v import train_word2vec
import tensorflow as tf
import keras.backend.tensorflow_backend as KTF
parser = ap.ArgumentParser(description='CNN for sentence classtion')
parser.add_argument('--epochs', type=int,
default=50, # should increase += 50?
help='default=50; epochs count')
parser.add_argument('--dataset', type=str,
choices=['okstatus', 'okuser'],
default='okstatus',
help='default=okstatus, choose dataset')
parser.add_argument('--maxlen', type=int,
default=56,
help='default=56; max sentence length')
parser.add_argument('--optimizer', type=str, choices=['adam', 'adagrad', 'rmsprop', 'adadelta'],
default='adadelta',
help='default=adadelta; keras optimizer')
parser.add_argument('--batch', type=int,
default=50, # same as in the paper
help='default=50; training batch size')
parser.add_argument('--embedding_dim', type=int,
default=300, # same as in the paper
help='default=50; embedding size')
parser.add_argument('--hidden_dim', type=int,
default=150,
help='default=150; hidden layer size')
parser.add_argument('--num_filters', type=int,
default=100, # same as in the paper
help='default=100; filters number')
parser.add_argument('--gpu_fraction', type=float,
default=0.2,
help='default=0.2; GPU fraction, please, use with care')
parser.add_argument('--variation', type=str, choices=['CNN-static', 'CNN-rand', 'CNN-non-static'],
default='CNN-static', help='default=CNN-static')
parser.add_argument('--dropout', type=float, default=0.5, help='default=0.5, dropout on penultimate layer')
parser.add_argument('--pref', type=str, default=None,
help='default=None (do not save); prefix for saving models')
args = parser.parse_args()
# GPU restrictions
def get_session(gpu_fraction=args.gpu_fraction):
"""
Allocating only gpu_fraction of GPU memory for TensorFlow.
"""
num_threads = os.environ.get('OMP_NUM_THREADS')
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
if num_threads:
return tf.Session(config=tf.ConfigProto(
gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
else:
return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
KTF.set_session(get_session())
# ------- setting dataset -----------------------
print('Loading dataset %s...' % args.dataset)
(xt, yt), (x_test, y_test) = (None, None), (None, None)
if args.dataset == 'okstatus':
(xt, yt), (x_test, y_test) = data_helpers.load_ok_data_gender()
mode = 'binary'
elif args.dataset == 'okuser':
(xt, yt), (x_test, y_test) = data_helpers.load_ok_user_data_gender()
mode = 'binary'
else:
raise Exception("Unknown dataset: " + args.dataset)
# ------- setting read args ---------------------
np.random.seed(2)
model_variation = args.variation
# model hyperparameters
# todo: should have l2 norm constraints for regularization (paper, section 2.1)
sequence_length = int(args.maxlen)
embedding_dim = int(args.embedding_dim) # 20
filter_sizes = (3, 4, 5) # (3, 4)
num_filters = int(args.num_filters) # 150
dropout_prob = (args.dropout, args.dropout, args.dropout)
hidden_dims = int(args.hidden_dim)
# training parameters
batch_size = int(args.batch)
num_epochs = int(args.epochs)
val_split = 0.1
# w2v parameters, see train_word2vec
# todo: probably should not do word2vec stuff here in main.py?
min_word_count = 1 # Minimum word count
context = 10 # Context window size
# load data
print("Loading data...")
# reading texts and labels
xt, yt, x_test, y_test, vocabulary, vocabulary_inv = data_helpers.build_word_level_data((xt, yt), (x_test, y_test))
if model_variation == 'CNN-non-static' or model_variation == 'CNN-static':
embedding_weights = train_word2vec(xt, vocabulary_inv, embedding_dim, min_word_count, context)
if model_variation == 'CNN-static':
# setting word vectors using words indices set with vocabulary
xt = embedding_weights[xt]
x_test = embedding_weights[x_test]
elif model_variation == 'CNN-rand':
embedding_weights = None
else:
raise ValueError('Unknown model variation')
# todo: let shuffle data?
# shuffle_indices = np.random.permutation(np.arange(len(y)))
# x_shuffled = x[shuffle_indices]
# y_shuffled = y[shuffle_indices].argmax(axis=1)
print("Vocabulary Size: {:d}".format(len(vocabulary)))
model = build_compiled_model(model_variation, sequence_length, embedding_dim,
filter_sizes, num_filters, vocabulary,
embedding_weights, dropout_prob, hidden_dims, args.optimizer)
# training model
print("Number of epochs:", num_epochs)
model.fit(xt, yt,
batch_size=batch_size,
nb_epoch=num_epochs,
validation_split=val_split,
verbose=2)
# saving model
if args.pref is not None:
print('Saving model with prefix %s.%02d...' % (args.pref, num_epochs))
model_name_path = '%s.%02d.json' % (args.pref, num_epochs)
model_weights_path = '%s.%02d.h5' % (args.pref, num_epochs)
json_string = model.to_json()
with open(model_name_path, 'w') as f:
json.dump(json_string, f)
model.save_weights(model_weights_path, overwrite=True)
res = model.test_on_batch(x_test, y_test)
print("Loss", res[0], "Accuracy", res[1])