forked from kanavsetia/pgs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymmetries.py
76 lines (64 loc) · 2.5 KB
/
symmetries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import itertools
import numpy as np
from scipy import linalg as scila
# from qiskit.aqua import Operator
import qutip as qt
from qiskit.quantum_info import Pauli
import pdb
def find_symmetry_ops(r_matrices):
"""
Args:
r_matrices (list[numpy.ndarray]): a list of rotation matrices.
Returns:
numpy.ndarray: the V matrix
list[Operator]: symmetry paulis
list[Operator]: cliffords, composed of symmetries and single-qubit op
list[int]: position of the single-qubit operators that anticommute
with the cliffords
"""
modes = r_matrices[0].shape[0]
g_matrices = []
for r_matrix in r_matrices:
g_matrix = -1j * scila.logm(r_matrix)
g_matrices.append(g_matrix)
sim_dia = []
for g_matrix in g_matrices:
sim_dia.append(qt.Qobj(g_matrix))
d_v = qt.simdiag(sim_dia)
d_matrices = d_v[0]
v_matrix = np.hstack([d_v[1][i].data.toarray() for i in range(modes)])
# check the build d_matrix
for eig in d_matrices.flatten():
print(eig)
if not (np.isclose(eig, 0.0) or np.isclose(eig, np.pi)):
# print(np.where(d_matrices.flatten()==eig))
raise ValueError('The specified R matrix is invalid. \
Eigenvalues of G includes: {}'.format(eig))
single_qubit_list = []
cliffords = []
pauli_symmetries = []
existed_pi_locs = []
# pdb.set_trace()
for d_idx in range(len(d_matrices)):
pi_index = np.where(np.isclose(d_matrices[d_idx], np.pi))[0]
single_qubit_pauli = ['I'] * modes
pi_loc = 0
for i in pi_index:
if i not in existed_pi_locs:
pi_loc = i
existed_pi_locs.extend(pi_index.tolist())
break
single_qubit_pauli[pi_loc] = 'X'
single_qubit_pauli = ''.join(single_qubit_pauli)
single_qubit_op = Operator(paulis=[[1.0, Pauli.from_label(single_qubit_pauli[::-1])]])
single_qubit_list.append(pi_loc)
symmetries_pauli_label = ''
for i in range(modes):
symmetries_pauli_label += 'I' if i not in pi_index else 'Z'
sym_pauli = Pauli.from_label(symmetries_pauli_label[::-1])
pauli_symmetries.append(sym_pauli)
symmetries_op = Operator(paulis=[[1.0, sym_pauli]])
clifford_op = single_qubit_op + symmetries_op
clifford_op.scaling_coeff(1.0 / np.sqrt(2))
cliffords.append(clifford_op)
return v_matrix, pauli_symmetries, cliffords, single_qubit_list