-
Notifications
You must be signed in to change notification settings - Fork 0
/
broken-line-shelling-examples-complete-graphic-matroids.sagews
76 lines (61 loc) · 51.1 KB
/
broken-line-shelling-examples-complete-graphic-matroids.sagews
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
︠ac2abe67-4a74-4c4b-ae79-932bca712c8cs︠
load("shellings.sage")
M = matroids.CompleteGraphic(3)
V = M.matroid_polytope().vertices_list()
vFav = V[0]
pivots = [1,2]
misses = 5
limit = 3
w = 5.0
result = search(V, vFav, pivots, limit, misses, w)
display_results(result)
︡98a3008a-c220-4369-b366-8a6cba45e192︡{"stdout":"At pivot 2 we found 0 valid, new linear functionals after 1000 tries. We recommend changing your search parameters"}︡{"stdout":"\nAt pivot 2 we found 0 valid, new linear functionals after 1000 tries. We recommend changing your search parameters"}︡{"stdout":"\ntime to find all the distinct, valid sweeps: 0.929528951645\nwe have 2 sweeps total.\n\ntime needed to sort only the distinct posets from all sweeps: 0.00496792793274\nOf these 2 sweeps, only 1 gave rise to non-isomorphic posets\n\n"}︡{"stdout":"Below is poset number 0 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_8FGJqe.svg","show":true,"text":null,"uuid":"b214812b-a64a-4e73-8619-4e96b3384348"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+-----------+-------------+--------+-------------------------+\n (0, 1, 1) 0 [] (0.679, -0.538, -0.141)\n (1, 0, 1) 1 [0] (0.954, -0.258, -0.697)\n (1, 1, 0) 2 [0, 1] (0.954, -0.258, -0.697)"}︡{"stdout":"\n\n\n"}︡{"done":true}
︠1d5afde5-c5c7-4cd5-9f76-463d7273d40c︠
load("shellings.sage")
M = matroids.CompleteGraphic(4)
V = M.matroid_polytope().vertices_list()
vFav = V[0]
pivots = [3,7]
misses = 5
limit = 3
w = 5.0
result = search(V, vFav, pivots, limit, misses, w)
display_results(result)
︡b0a68eb0-268c-40a9-9933-9a35306dd006︡{"stdout":"time to find all the distinct, valid sweeps: 0.18058013916"}︡{"stdout":"\nwe have 18 sweeps total.\n\ntime needed to sort only the distinct posets from all sweeps: 0.923147916794"}︡{"stdout":"\nOf these 18 sweeps, only 3 gave rise to non-isomorphic posets\n\n"}︡{"stdout":"Below is poset number 0 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_t3Pr3v.svg","show":true,"text":null,"uuid":"5d6fe87d-f496-4fc0-bf9f-e82db30c4097"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 1, 0, 1, 0) 1 [1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 1, 0) 2 [3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 0, 1) 3 [3, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (0, 1, 0, 0, 1, 1) 4 [1, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 1, 0, 0, 1) 5 [0] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 0, 0, 1, 1) 6 [0, 4] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (0, 1, 1, 1, 0, 0) 7 [1, 3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 1, 0, 0, 0) 8 [0, 1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 1, 1, 0, 0) 9 [0, 3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 0, 1, 1, 0) 10 [1, 3, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 0, 0, 1, 0) 11 [0, 1, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 0, 1, 1, 0) 12 [0, 3, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 0, 1, 0, 1) 13 [1, 3, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 0, 0, 0, 1) 14 [0, 1, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 0, 1, 0, 1) 15 [0, 3, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)"}︡{"stdout":"\n\n\nBelow is poset number 1 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_ecT71b.svg","show":true,"text":null,"uuid":"2e05bc47-0e1c-4328-ac85-fd1749c0847e"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+-----------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 1, 0, 1, 0) 1 [1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 1, 0) 2 [3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 0, 1) 3 [3, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (0, 1, 0, 0, 1, 1) 4 [1, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 1, 0, 0, 1) 5 [0] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 0, 0, 1, 1) 6 [0, 4] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 0, 1, 0, 1) 7 [0, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (0, 1, 0, 1, 0, 1) 8 [1, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 0, 1, 1, 0, 0) 9 [0, 2, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (0, 1, 1, 1, 0, 0) 10 [1, 2, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 0, 0, 1, 1, 0) 11 [0, 3, 4] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (0, 1, 0, 1, 1, 0) 12 [1, 3, 4] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 1, 0, 0, 0, 1) 13 [0, 1] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 1, 1, 0, 0, 0) 14 [0, 1, 2] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 1, 0, 0, 1, 0) 15 [0, 1, 4] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)"}︡{"stdout":"\n\n\nBelow is poset number 2 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_p5J5W2.svg","show":true,"text":null,"uuid":"7de09ddc-2cfc-456d-a135-def803f719f9"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+-----------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 1, 0, 1, 0) 1 [1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 1, 0) 2 [3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 0, 1) 3 [3, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 1, 0, 0, 1) 4 [0] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 0, 0, 1, 1) 5 [1, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 0, 0, 1, 1) 6 [0, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 0, 0, 1, 0) 7 [0, 1] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (0, 1, 0, 1, 1, 0) 8 [1, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 1, 1, 0, 0, 0) 9 [0, 1, 2] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (0, 1, 1, 1, 0, 0) 10 [1, 2, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 0, 0, 1, 1, 0) 11 [0, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 1, 0, 0, 0, 1) 12 [0, 1, 5] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (0, 1, 0, 1, 0, 1) 13 [1, 3, 5] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 0, 1, 1, 0, 0) 14 [0, 2, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 0, 0, 1, 0, 1) 15 [0, 3, 5] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)"}︡{"stdout":"\n\n\n"}︡{"done":true}
︠c909aad0-a26d-4c98-83b4-8d3a60bb5277s︠
# try some new parameter values, updating the list of posets we have found without losing the posets we already computed.
pivots = [3,4]
misses = 5
limit = 3
w = 0.0
result = update_search(result, V, vFav, pivots, limit, misses, w)
display_results(result)
︡9d0bf0b6-65eb-4e1c-a637-9c053854c1b0︡{"stdout":"time to find all the distinct, valid sweeps: 0.529934883118"}︡{"stdout":"\nwe have 4 sweeps total.\n\ntime needed to sort only the distinct posets from all sweeps: 0.132333040237"}︡{"stdout":"\nOf these 4 sweeps, only 4 gave rise to non-isomorphic posets\n\n"}︡{"stdout":"Below is poset number 0 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_F6NkZY.svg","show":true,"text":null,"uuid":"7ebc3733-7228-4a88-bab5-70eae4e2f769"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 1, 0, 1, 0) 1 [1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 1, 0) 2 [3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 0, 1) 3 [3, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (0, 1, 0, 0, 1, 1) 4 [1, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 1, 0, 0, 1) 5 [0] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 0, 0, 1, 1) 6 [0, 4] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (0, 1, 1, 1, 0, 0) 7 [1, 3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 1, 0, 0, 0) 8 [0, 1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 1, 1, 0, 0) 9 [0, 3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 0, 1, 1, 0) 10 [1, 3, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 0, 0, 1, 0) 11 [0, 1, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 0, 1, 1, 0) 12 [0, 3, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 0, 1, 0, 1) 13 [1, 3, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 0, 0, 0, 1) 14 [0, 1, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 0, 1, 0, 1) 15 [0, 3, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)"}︡{"stdout":"\n\n\nBelow is poset number 1 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_PmIUMz.svg","show":true,"text":null,"uuid":"2d8953bd-12ed-4aa5-9dac-f76b6904644e"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+-----------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 1, 0, 1, 0) 1 [1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 1, 0) 2 [3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 0, 1) 3 [3, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (0, 1, 0, 0, 1, 1) 4 [1, 5] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 1, 0, 0, 1) 5 [0] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 0, 0, 1, 1) 6 [0, 4] (2.32, 1.62, -2.85, 2.08, -2.18, -0.989)\n (1, 0, 0, 1, 0, 1) 7 [0, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (0, 1, 0, 1, 0, 1) 8 [1, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 0, 1, 1, 0, 0) 9 [0, 2, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (0, 1, 1, 1, 0, 0) 10 [1, 2, 3] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 0, 0, 1, 1, 0) 11 [0, 3, 4] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (0, 1, 0, 1, 1, 0) 12 [1, 3, 4] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 1, 0, 0, 0, 1) 13 [0, 1] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 1, 1, 0, 0, 0) 14 [0, 1, 2] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)\n (1, 1, 0, 0, 1, 0) 15 [0, 1, 4] (0.575, 0.579, -0.536, 0.430, -0.474, -0.573)"}︡{"stdout":"\n\n\nBelow is poset number 2 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_D_Va03.svg","show":true,"text":null,"uuid":"034e6136-4095-4209-9da4-de7fa70a65c3"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+-----------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 1, 0, 1, 0) 1 [1] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 1, 0) 2 [3] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 0, 1, 1, 0, 1) 3 [3, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 1, 0, 0, 1) 4 [0] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (0, 1, 0, 0, 1, 1) 5 [1, 5] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 0, 0, 0, 1, 1) 6 [0, 4] (1.18, 1.06, -1.33, 1.06, -1.13, -0.839)\n (1, 1, 0, 0, 1, 0) 7 [0, 1] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (0, 1, 0, 1, 1, 0) 8 [1, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 1, 1, 0, 0, 0) 9 [0, 1, 2] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (0, 1, 1, 1, 0, 0) 10 [1, 2, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 0, 0, 1, 1, 0) 11 [0, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 1, 0, 0, 0, 1) 12 [0, 1, 5] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (0, 1, 0, 1, 0, 1) 13 [1, 3, 5] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 0, 1, 1, 0, 0) 14 [0, 2, 3] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)\n (1, 0, 0, 1, 0, 1) 15 [0, 3, 5] (0.627, 0.567, -0.594, 0.631, -0.653, -0.579)"}︡{"stdout":"\n\n\nBelow is poset number 3 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_Z3zj9u.svg","show":true,"text":null,"uuid":"f4658e49-514d-4ff3-ab74-643c9bcd447d"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------+-------------+-----------+-------------------------------------------------+\n (0, 0, 1, 0, 1, 1) 0 [] (-0.196, 0.643, -0.360, 0.418, -0.476, -0.0290)\n (1, 0, 0, 0, 1, 1) 1 [0] (-0.196, 0.643, -0.360, 0.418, -0.476, -0.0290)\n (1, 0, 1, 0, 0, 1) 2 [0, 2] (-0.196, 0.643, -0.360, 0.418, -0.476, -0.0290)\n (0, 0, 1, 1, 0, 1) 3 [3] (0.357, 0.480, -0.394, 0.381, -0.397, -0.428)\n (0, 0, 1, 1, 1, 0) 4 [3, 4] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (0, 1, 1, 0, 1, 0) 5 [1] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (0, 1, 0, 0, 1, 1) 6 [1, 5] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (1, 0, 1, 1, 0, 0) 7 [0, 3] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (1, 1, 1, 0, 0, 0) 8 [0, 1] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (1, 0, 0, 1, 0, 1) 9 [0, 3, 5] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (1, 0, 0, 1, 1, 0) 10 [0, 3, 4] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (1, 1, 0, 0, 0, 1) 11 [0, 1, 5] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (0, 1, 1, 1, 0, 0) 12 [1, 3] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (1, 1, 0, 0, 1, 0) 13 [0, 1, 4] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (0, 1, 0, 1, 0, 1) 14 [1, 3, 5] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)\n (0, 1, 0, 1, 1, 0) 15 [1, 3, 4] (0.383, 0.427, -0.431, 0.414, -0.392, -0.400)"}︡{"stdout":"\n\n\n"}︡{"done":true}
︠26200a6d-ba67-403e-bf94-4fddab063c51s︠
load("shellings.sage")
M = matroids.CompleteGraphic(5)
V = M.matroid_polytope().vertices_list()
vFav = V[0]
pivots = [1,2]
misses = 5
limit = 3
w = 5.0
result = search(V, vFav, pivots, limit, misses, w)
display_results(result)
︡9d9d8e93-b0cf-48a3-a0a6-e57c122368fe︡{"stdout":"time to find all the distinct, valid sweeps: 5.35298490524"}︡{"stdout":"\nwe have 33 sweeps total.\n\ntime needed to sort only the distinct posets from all sweeps: 50.2362060547"}︡{"stdout":"\nOf these 33 sweeps, only 1 gave rise to non-isomorphic posets\n\n"}︡{"stdout":"Below is poset number 0 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_u6H6r0.svg","show":true,"text":null,"uuid":"2589425a-1826-4686-8387-aee4c827bd9a"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------------------+-------------+--------------+--------------------------------------------------------------------------------+\n (0, 0, 0, 1, 0, 0, 1, 0, 1, 1) 0 [] (0.301, -0.0323, 0.498, -0.483, 0.0924, 0.241, -0.365, 0.181, -0.438, 0.00451)\n (0, 0, 0, 1, 0, 0, 1, 1, 1, 0) 1 [7] (0.781, 0.183, 1.21, -1.29, 0.436, 0.734, -1.07, 0.599, -1.19, -0.394)\n (0, 0, 0, 1, 0, 1, 1, 0, 1, 0) 2 [5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 0, 1, 0, 0, 1) 3 [1] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 0, 1, 0, 1, 1) 4 [8, 1] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 0, 0, 1, 1) 5 [4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 0, 1, 0, 1, 0) 6 [2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 1, 0, 0, 1) 7 [4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 0, 1, 1, 0, 1) 8 [9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 0, 0, 1, 1) 9 [9, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 0, 0, 0, 1, 1) 10 [0] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 0, 1, 0, 1, 1) 11 [0, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 0, 1, 0, 1, 1) 12 [9, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 0, 1, 1, 0, 0) 13 [1, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 0, 1, 1, 1, 0) 14 [8, 1, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 1, 1, 0, 0, 0) 15 [1, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 0, 1, 1, 0) 16 [4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 1, 0, 1, 0) 17 [8, 1, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 1, 1, 0, 0) 18 [4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 1, 0, 0, 1, 0) 19 [4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 1, 1, 0, 0, 0) 20 [4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 0, 1, 1, 0) 21 [5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 0, 0, 1, 1, 0) 22 [0, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 1, 0, 0, 0, 0, 1) 23 [1, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 1, 1, 0, 0) 24 [5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 0, 0, 1, 1) 25 [8, 1, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 1, 0, 0, 1, 0) 26 [0, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 1, 0, 0, 1, 0, 0, 0) 27 [1, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 0, 1, 1, 1, 0) 28 [0, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 0, 1, 0, 1, 0) 29 [8, 1, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 1, 0, 0, 1) 30 [1, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 0, 0, 0, 1, 0) 31 [2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 1, 0, 0, 0, 1) 32 [1, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 1, 0, 0, 0, 0, 0, 1) 33 [0, 1] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 1, 0, 1, 0) 34 [0, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 0, 1, 0, 0, 0) 35 [2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 0, 1, 1, 0, 1) 36 [1, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 0, 0, 1, 1) 37 [8, 1, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 0, 1, 0, 1) 38 [9, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 0, 0, 1, 1) 39 [0, 1, 8] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 0, 1, 1, 0, 0) 40 [2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 1, 0, 0, 1, 0) 41 [2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 1, 0, 0, 0, 1) 42 [9, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 1, 0, 0, 1) 43 [0, 1, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 1, 0, 0, 0, 0, 1, 0) 44 [0, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 1, 0, 0, 0, 0, 1) 45 [0, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 0, 1, 1, 1, 0) 46 [8, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 0, 1, 0, 1) 47 [9, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 0, 0, 1, 1) 48 [0, 8, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 0, 0, 1, 0, 1) 49 [0, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 1, 0, 1, 0) 50 [2, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 1, 0, 1, 0) 51 [0, 2, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 1, 0, 0, 1) 52 [0, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 0, 1, 1, 0, 1) 53 [0, 9, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 0, 0, 1, 1) 54 [0, 9, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 0, 1, 0, 0, 1) 55 [1, 2, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 0, 0, 1, 1) 56 [9, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 1, 0, 0, 1) 57 [9, 2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 1, 0, 0, 1, 0, 0) 58 [1, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 0, 1, 1, 0, 1) 59 [9, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 0, 0, 1, 1) 60 [9, 2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 0, 0, 1, 1) 61 [0, 9, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 0, 1, 1, 0) 62 [8, 1, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 1, 1, 0, 0, 0, 0) 63 [1, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 1, 1, 0, 0) 64 [1, 4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 1, 0, 0, 1, 0) 65 [8, 1, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 1, 0, 1, 0, 0) 66 [1, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 1, 0, 0, 0, 1, 0, 0) 67 [0, 1, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 1, 1, 0, 0, 0) 68 [1, 4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 0, 1, 1, 0) 69 [8, 1, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 0, 1, 1, 0) 70 [0, 1, 8, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 1, 0, 1, 0, 0, 0, 0) 71 [0, 1, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 1, 1, 0, 0) 72 [1, 5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 1, 1, 0, 0) 73 [0, 1, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 1, 0, 0, 1, 0) 74 [0, 1, 5, 8] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 1, 0, 0, 1, 0, 0) 75 [0, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 1, 1, 0, 0, 0, 0, 0) 76 [1, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 1, 1, 0, 0, 0) 77 [0, 1, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 0, 1, 1, 0) 78 [0, 8, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 1, 0, 0, 0, 1, 0) 79 [8, 1, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 1, 1, 0, 0, 0, 0) 80 [0, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 1, 1, 0, 0) 81 [0, 4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 1, 0, 0, 1, 0) 82 [0, 8, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 1, 0, 1, 0, 0, 0) 83 [1, 2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 0, 1, 0, 1) 84 [1, 4, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 1, 0, 1, 0, 0) 85 [0, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 1, 0, 1, 0, 0, 0, 0) 86 [1, 2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 87 [0, 1, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 1, 1, 0, 0, 0) 88 [0, 4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 0, 1, 1, 0) 89 [0, 8, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 1, 0, 0, 1, 0) 90 [8, 1, 2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 1, 0, 0, 0, 1) 91 [1, 4, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 0, 0, 1, 0, 0) 92 [2, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 0, 0, 0, 0, 0, 1, 0) 93 [0, 1, 2, 8] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 1, 1, 0, 0) 94 [0, 5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 1, 1, 0, 0, 0) 95 [1, 2, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 0, 1, 1, 0) 96 [8, 2, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 1, 0, 0, 0, 0) 97 [2, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 0, 1, 0, 1) 98 [1, 9, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 0, 0, 0, 1, 0, 0, 0) 99 [0, 1, 2, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 1, 1, 0, 0, 0, 0, 0) 100 [0, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 0, 1, 0, 1) 101 [0, 1, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 1, 1, 0, 0) 102 [2, 4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 1, 0, 0, 1, 0) 103 [8, 2, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 1, 0, 1, 0, 0) 104 [2, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 1, 0, 0, 0, 1, 0) 105 [0, 8, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 1, 0, 0, 0, 1) 106 [0, 1, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 1, 0, 0, 0, 1, 0, 0) 107 [0, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 1, 1, 0, 0, 0) 108 [2, 4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 0, 1, 1, 0) 109 [8, 2, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 1, 0, 1, 0, 0, 0) 110 [0, 2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 0, 1, 1, 0) 111 [0, 8, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 0, 1, 0, 1) 112 [0, 9, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 1, 0, 0, 0, 0, 1) 113 [1, 2, 4, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 1, 1, 0, 0) 114 [2, 5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 1, 1, 0, 0) 115 [0, 2, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 1, 0, 0, 0, 1) 116 [0, 9, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 0, 1, 0, 1) 117 [0, 9, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 1, 0, 0, 0, 1) 118 [1, 2, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 0, 0, 0, 0, 0, 0, 1) 119 [0, 1, 2, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 0, 1, 0, 1) 120 [9, 2, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 1, 0, 0, 0, 1) 121 [9, 2, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 1, 0, 0, 0, 0, 1) 122 [0, 9, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 0, 1, 0, 1) 123 [9, 2, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 0, 1, 0, 1) 124 [0, 9, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)"}︡{"stdout":"\n\n\n"}︡{"done":true}
︠c3c0e369-7ec1-4e59-88aa-541d833a6569s︠
# try some new parameter values, updating the list of posets we have found without losing the posets we already computed.
pivots = [3,7]
misses = 5
limit = 3
w = 0.0
result = update_search(result, V, vFav, pivots, limit, misses, w)
display_results(result)
︡bba9da89-b006-4ffa-8f5b-6711bea737ef︡{"stdout":"At pivot 7 we found 0 valid, new linear functionals after 1000 tries. We recommend changing your search parameters"}︡{"stdout":"\ntime to find all the distinct, valid sweeps: 193.96558404"}︡{"stdout":"\nwe have 5 sweeps total.\n\ntime needed to sort only the distinct posets from all sweeps: 7.08133006096"}︡{"stdout":"\nOf these 5 sweeps, only 1 gave rise to non-isomorphic posets\n\n"}︡{"stdout":"Below is poset number 0 and its associated data.\n"}︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_YD7tLh.svg","show":true,"text":null,"uuid":"d60cd535-482f-4d80-aa9f-544b5664ebe7"},"once":false}︡{"stdout":" vertex order swept IP set linear fncl\n+--------------------------------+-------------+--------------+--------------------------------------------------------------------------------+\n (0, 0, 0, 1, 0, 0, 1, 0, 1, 1) 0 [] (0.301, -0.0323, 0.498, -0.483, 0.0924, 0.241, -0.365, 0.181, -0.438, 0.00451)\n (0, 0, 0, 1, 0, 0, 1, 1, 1, 0) 1 [7] (0.781, 0.183, 1.21, -1.29, 0.436, 0.734, -1.07, 0.599, -1.19, -0.394)\n (0, 0, 0, 1, 0, 1, 1, 0, 1, 0) 2 [5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 0, 1, 0, 0, 1) 3 [1] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 0, 1, 0, 1, 1) 4 [8, 1] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 0, 0, 1, 1) 5 [4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 0, 1, 0, 1, 0) 6 [2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 1, 0, 0, 1) 7 [4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 0, 1, 1, 0, 1) 8 [9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 0, 0, 1, 1) 9 [9, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 0, 0, 0, 1, 1) 10 [0] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 0, 1, 0, 1, 1) 11 [0, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 0, 1, 0, 1, 1) 12 [9, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 0, 1, 1, 0, 0) 13 [1, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 0, 1, 1, 1, 0) 14 [8, 1, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 1, 1, 0, 0, 0) 15 [1, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 0, 1, 1, 0) 16 [4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 1, 0, 1, 0) 17 [8, 1, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 1, 1, 0, 0) 18 [4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 1, 0, 0, 1, 0) 19 [4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 1, 1, 0, 0, 0) 20 [4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 0, 1, 1, 0) 21 [5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 0, 0, 1, 1, 0) 22 [0, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 1, 0, 0, 0, 0, 1) 23 [1, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 1, 1, 0, 0) 24 [5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 0, 0, 1, 1) 25 [8, 1, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 1, 0, 0, 1, 0) 26 [0, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 1, 0, 0, 1, 0, 0, 0) 27 [1, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 0, 1, 1, 1, 0) 28 [0, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 0, 1, 0, 1, 0) 29 [8, 1, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 1, 0, 0, 1) 30 [1, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 0, 0, 0, 1, 0) 31 [2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 1, 0, 0, 0, 1) 32 [1, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 1, 0, 0, 0, 0, 0, 1) 33 [0, 1] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 1, 0, 1, 0) 34 [0, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 0, 1, 0, 0, 0) 35 [2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 0, 1, 1, 0, 1) 36 [1, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 0, 0, 1, 1) 37 [8, 1, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 0, 0, 1, 0, 1) 38 [9, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 0, 0, 1, 1) 39 [0, 1, 8] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 0, 1, 1, 0, 0) 40 [2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 1, 0, 0, 1, 0) 41 [2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 1, 1, 0, 0, 0, 1) 42 [9, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 1, 0, 0, 1) 43 [0, 1, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 1, 0, 0, 0, 0, 1, 0) 44 [0, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 1, 0, 0, 0, 0, 1) 45 [0, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 0, 1, 1, 1, 0) 46 [8, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 0, 1, 0, 1, 0, 1, 0, 1) 47 [9, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 0, 0, 1, 1) 48 [0, 8, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 0, 0, 1, 0, 1) 49 [0, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 1, 0, 1, 0) 50 [2, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 1, 0, 1, 0) 51 [0, 2, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 1, 0, 0, 1) 52 [0, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 0, 1, 1, 0, 1) 53 [0, 9, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 0, 0, 1, 1) 54 [0, 9, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 0, 1, 0, 0, 1) 55 [1, 2, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 0, 0, 1, 1) 56 [9, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 1, 0, 0, 1) 57 [9, 2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 1, 0, 0, 1, 0, 0) 58 [1, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 0, 1, 1, 0, 1) 59 [9, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 0, 0, 1, 1) 60 [9, 2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 0, 0, 1, 1) 61 [0, 9, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 0, 1, 1, 0) 62 [8, 1, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 1, 1, 0, 0, 0, 0) 63 [1, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 1, 1, 0, 0) 64 [1, 4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 1, 0, 0, 1, 0) 65 [8, 1, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 1, 0, 1, 0, 1, 0, 0) 66 [1, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 1, 0, 0, 0, 1, 0, 0) 67 [0, 1, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 1, 1, 0, 0, 0) 68 [1, 4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 0, 1, 1, 0) 69 [8, 1, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 0, 1, 1, 0) 70 [0, 1, 8, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 1, 0, 1, 0, 0, 0, 0) 71 [0, 1, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 1, 1, 0, 0) 72 [1, 5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 1, 1, 0, 0) 73 [0, 1, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 1, 0, 0, 1, 0) 74 [0, 1, 5, 8] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 1, 0, 0, 1, 0, 0) 75 [0, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 1, 1, 0, 0, 0, 0, 0) 76 [1, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 1, 1, 0, 0, 0) 77 [0, 1, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 0, 1, 1, 0) 78 [0, 8, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 1, 0, 0, 0, 1, 0) 79 [8, 1, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 1, 1, 0, 0, 0, 0) 80 [0, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 1, 1, 0, 0) 81 [0, 4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 1, 0, 0, 1, 0) 82 [0, 8, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 1, 0, 1, 0, 0, 0) 83 [1, 2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 0, 0, 1, 0, 1) 84 [1, 4, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 1, 0, 1, 0, 1, 0, 0) 85 [0, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 1, 0, 1, 0, 0, 0, 0) 86 [1, 2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 87 [0, 1, 2] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 1, 1, 0, 0, 0) 88 [0, 4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 0, 1, 1, 0) 89 [0, 8, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 1, 0, 0, 1, 0) 90 [8, 1, 2, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 1, 1, 0, 0, 0, 1) 91 [1, 4, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 0, 0, 1, 0, 0) 92 [2, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 0, 0, 0, 0, 0, 1, 0) 93 [0, 1, 2, 8] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 1, 1, 0, 0) 94 [0, 5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 1, 1, 0, 0, 0) 95 [1, 2, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 0, 1, 1, 0) 96 [8, 2, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 1, 1, 0, 0, 0, 0) 97 [2, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 0, 0, 0, 1, 0, 1, 0, 1) 98 [1, 9, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 0, 0, 0, 1, 0, 0, 0) 99 [0, 1, 2, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 1, 1, 0, 0, 0, 0, 0) 100 [0, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 0, 0, 1, 0, 1) 101 [0, 1, 9, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 1, 1, 0, 0) 102 [2, 4, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 1, 0, 0, 1, 0) 103 [8, 2, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 1, 0, 1, 0, 1, 0, 0) 104 [2, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 1, 0, 0, 0, 1, 0) 105 [0, 8, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 0, 0, 0, 1, 0, 0, 0, 1) 106 [0, 1, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 1, 0, 0, 0, 1, 0, 0) 107 [0, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 1, 1, 0, 0, 0) 108 [2, 4, 5, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 0, 1, 1, 0) 109 [8, 2, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 1, 0, 1, 0, 0, 0) 110 [0, 2, 4, 6] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 0, 1, 1, 0) 111 [0, 8, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 0, 0, 1, 0, 1) 112 [0, 9, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 1, 0, 0, 0, 0, 1) 113 [1, 2, 4, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 1, 1, 0, 0) 114 [2, 5, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 1, 1, 0, 0) 115 [0, 2, 6, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 1, 1, 0, 0, 0, 1) 116 [0, 9, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 0, 0, 0, 1, 0, 1, 0, 1) 117 [0, 9, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 1, 1, 0, 0, 1, 0, 0, 0, 1) 118 [1, 2, 5, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 1, 1, 0, 0, 0, 0, 0, 0, 1) 119 [0, 1, 2, 9] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 0, 0, 1, 0, 1) 120 [9, 2, 4, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 1, 1, 0, 0, 0, 1) 121 [9, 2, 4, 5] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 1, 0, 0, 0, 0, 1) 122 [0, 9, 2, 4] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (0, 0, 1, 0, 0, 1, 0, 1, 0, 1) 123 [9, 2, 5, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)\n (1, 0, 1, 0, 0, 0, 0, 1, 0, 1) 124 [0, 9, 2, 7] (1.48, 0.538, 2.16, -2.41, 0.950, 1.40, -2.05, 1.19, -2.24, -1.02)"}︡{"stdout":"\n\n\n"}︡{"done":true}
︠faa18a61-c807-4a6e-9191-937cba2b7d0c︠
print result[1] # list of all the posets you have computed so far
︡93d3e764-2f7f-4221-a9df-48dfe99c2d32︡{"stdout":"[Finite poset containing 125 elements]\n"}︡{"done":true}
︠5ce84d66-0909-49fb-9463-d4734f601259s︠
result[1][0].plot()
︡c8b08d19-c62d-40b5-a7bb-5b3829a59009︡{"file":{"filename":"/home/user/.sage/temp/project-e3d8858f-633e-4199-98c4-2459b1781fb3/76366/tmp_DI68sg.svg","show":true,"text":null,"uuid":"41da3e10-043a-4fae-ac22-f8a46906d61a"},"once":false}︡{"done":true}
︠3b76de2e-38c7-43cf-aaa2-0107c449ab3a︠