-
Notifications
You must be signed in to change notification settings - Fork 6
/
datasets.py
357 lines (279 loc) · 12.3 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import torch
from PIL import Image, ImageFile
from torchvision import transforms
import torchvision.datasets.folder
from torch.utils.data import TensorDataset, Subset
from torchvision.datasets import MNIST, ImageFolder
from torchvision.transforms.functional import rotate
# from wilds.datasets.camelyon17_dataset import Camelyon17Dataset
# from wilds.datasets.fmow_dataset import FMoWDataset
ImageFile.LOAD_TRUNCATED_IMAGES = True
DATASETS = [
# Debug
"Debug28",
"Debug224",
# Small images
"ColoredMNIST",
"RotatedMNIST",
# Big images
"VLCS",
"PACS",
"OfficeHome",
"TerraIncognita",
"DomainNet",
"SVIRO",
# WILDS datasets
"WILDSCamelyon",
"WILDSFMoW"
]
def get_dataset_class(dataset_name):
"""Return the dataset class with the given name."""
if dataset_name not in globals():
raise NotImplementedError("Dataset not found: {}".format(dataset_name))
return globals()[dataset_name]
def num_environments(dataset_name):
return len(get_dataset_class(dataset_name).ENVIRONMENTS)
class MultipleDomainDataset:
N_STEPS = 5001 # Default, subclasses may override
CHECKPOINT_FREQ = 100 # Default, subclasses may override
N_WORKERS = 8 # Default, subclasses may override
ENVIRONMENTS = None # Subclasses should override
INPUT_SHAPE = None # Subclasses should override
def __getitem__(self, index):
return self.datasets[index]
def __len__(self):
return len(self.datasets)
class Debug(MultipleDomainDataset):
def __init__(self, root, test_envs, hparams):
super().__init__()
self.input_shape = self.INPUT_SHAPE
self.num_classes = 2
self.datasets = []
for _ in [0, 1, 2]:
self.datasets.append(
TensorDataset(
torch.randn(16, *self.INPUT_SHAPE),
torch.randint(0, self.num_classes, (16,))
)
)
class Debug28(Debug):
INPUT_SHAPE = (3, 28, 28)
ENVIRONMENTS = ['0', '1', '2']
class Debug224(Debug):
INPUT_SHAPE = (3, 224, 224)
ENVIRONMENTS = ['0', '1', '2']
class MultipleEnvironmentMNIST(MultipleDomainDataset):
def __init__(self, root, environments, dataset_transform, input_shape,
num_classes):
super().__init__()
if root is None:
raise ValueError('Data directory not specified!')
original_dataset_tr = MNIST(root, train=True, download=True)
original_dataset_te = MNIST(root, train=False, download=True)
original_images = torch.cat((original_dataset_tr.data,
original_dataset_te.data))
original_labels = torch.cat((original_dataset_tr.targets,
original_dataset_te.targets))
shuffle = torch.randperm(len(original_images))
original_images = original_images[shuffle]
original_labels = original_labels[shuffle]
self.datasets = []
for i in range(len(environments)):
images = original_images[i::len(environments)]
labels = original_labels[i::len(environments)]
self.datasets.append(dataset_transform(images, labels, environments[i]))
self.input_shape = input_shape
self.num_classes = num_classes
class ColoredMNIST(MultipleEnvironmentMNIST):
ENVIRONMENTS = ['+90%', '+80%', '-90%']
CHECKPOINT_FREQ = 100 ## DiWA ##
def __init__(self, root, test_envs, hparams):
super(ColoredMNIST, self).__init__(root, [0.1, 0.2, 0.9],
self.color_dataset, (2, 28, 28,), 2)
self.input_shape = (2, 28, 28,)
self.num_classes = 2
def color_dataset(self, images, labels, environment):
# # Subsample 2x for computational convenience
# images = images.reshape((-1, 28, 28))[:, ::2, ::2]
# Assign a binary label based on the digit
labels = (labels < 5).float()
# Flip label with probability 0.25
labels = self.torch_xor_(labels,
self.torch_bernoulli_(0.25, len(labels)))
# Assign a color based on the label; flip the color with probability e
colors = self.torch_xor_(labels,
self.torch_bernoulli_(environment,
len(labels)))
images = torch.stack([images, images], dim=1)
# Apply the color to the image by zeroing out the other color channel
images[torch.tensor(range(len(images))), (
1 - colors).long(), :, :] *= 0
x = images.float().div_(255.0)
y = labels.view(-1).long()
return TensorDataset(x, y)
def torch_bernoulli_(self, p, size):
return (torch.rand(size) < p).float()
def torch_xor_(self, a, b):
return (a - b).abs()
class RotatedMNIST(MultipleEnvironmentMNIST):
ENVIRONMENTS = ['0', '15', '30', '45', '60', '75']
def __init__(self, root, test_envs, hparams):
super(RotatedMNIST, self).__init__(root, [0, 15, 30, 45, 60, 75],
self.rotate_dataset, (1, 28, 28,), 10)
def rotate_dataset(self, images, labels, angle):
rotation = transforms.Compose([
transforms.ToPILImage(),
transforms.Lambda(lambda x: rotate(x, angle, fill=(0,),
interpolation=torchvision.transforms.InterpolationMode.BILINEAR)),
transforms.ToTensor()])
x = torch.zeros(len(images), 1, 28, 28)
for i in range(len(images)):
x[i] = rotation(images[i])
y = labels.view(-1)
return TensorDataset(x, y)
class MultipleEnvironmentImageFolder(MultipleDomainDataset):
def __init__(self, root, test_envs, augment, hparams):
super().__init__()
environments = [f.name for f in os.scandir(root) if f.is_dir()]
environments = sorted(environments)
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
augment_transform = transforms.Compose([
# transforms.Resize((224,224)),
transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
self.datasets = []
for i, environment in enumerate(environments):
if augment and (i not in test_envs):
env_transform = augment_transform
else:
env_transform = transform
path = os.path.join(root, environment)
env_dataset = ImageFolder(path,
transform=env_transform)
self.datasets.append(env_dataset)
self.input_shape = (3, 224, 224,)
self.num_classes = len(self.datasets[-1].classes)
class VLCS(MultipleEnvironmentImageFolder):
CHECKPOINT_FREQ = 50 ## DiWA ##
ENVIRONMENTS = ["C", "L", "S", "V"]
def __init__(self, root, test_envs, hparams):
self.dir = os.path.join(root, "VLCS/")
super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams)
class PACS(MultipleEnvironmentImageFolder):
CHECKPOINT_FREQ = 100 ## DiWA ##
ENVIRONMENTS = ["A", "C", "P", "S"]
def __init__(self, root, test_envs, hparams):
self.dir = os.path.join(root, "PACS/")
super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams)
class DomainNet(MultipleEnvironmentImageFolder):
CHECKPOINT_FREQ = 500 ## DiWA ##
ENVIRONMENTS = ["clip", "info", "paint", "quick", "real", "sketch"]
def __init__(self, root, test_envs, hparams):
self.dir = os.path.join(root, "domain_net/")
super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams)
class OfficeHome(MultipleEnvironmentImageFolder):
CHECKPOINT_FREQ = 100 ## DiWA ##
ENVIRONMENTS = ["A", "C", "P", "R"]
def __init__(self, root, test_envs, hparams):
self.dir = os.path.join(root, "office_home/")
super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams)
class TerraIncognita(MultipleEnvironmentImageFolder):
CHECKPOINT_FREQ = 100 ## DiWA ##
ENVIRONMENTS = ["L100", "L38", "L43", "L46"]
def __init__(self, root, test_envs, hparams):
self.dir = os.path.join(root, "terra_incognita/")
super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams)
class SVIRO(MultipleEnvironmentImageFolder):
CHECKPOINT_FREQ = 300
ENVIRONMENTS = ["aclass", "escape", "hilux", "i3", "lexus", "tesla", "tiguan", "tucson", "x5", "zoe"]
def __init__(self, root, test_envs, hparams):
self.dir = os.path.join(root, "sviro/")
super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams)
class WILDSEnvironment:
def __init__(
self,
wilds_dataset,
metadata_name,
metadata_value,
transform=None):
self.name = metadata_name + "_" + str(metadata_value)
metadata_index = wilds_dataset.metadata_fields.index(metadata_name)
metadata_array = wilds_dataset.metadata_array
subset_indices = torch.where(
metadata_array[:, metadata_index] == metadata_value)[0]
self.dataset = wilds_dataset
self.indices = subset_indices
self.transform = transform
def __getitem__(self, i):
x = self.dataset.get_input(self.indices[i])
if type(x).__name__ != "Image":
x = Image.fromarray(x)
y = self.dataset.y_array[self.indices[i]]
if self.transform is not None:
x = self.transform(x)
return x, y
def __len__(self):
return len(self.indices)
class WILDSDataset(MultipleDomainDataset):
INPUT_SHAPE = (3, 224, 224)
def __init__(self, dataset, metadata_name, test_envs, augment, hparams):
super().__init__()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
augment_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
self.datasets = []
for i, metadata_value in enumerate(
self.metadata_values(dataset, metadata_name)):
if augment and (i not in test_envs):
env_transform = augment_transform
else:
env_transform = transform
env_dataset = WILDSEnvironment(
dataset, metadata_name, metadata_value, env_transform)
self.datasets.append(env_dataset)
self.input_shape = (3, 224, 224,)
self.num_classes = dataset.n_classes
def metadata_values(self, wilds_dataset, metadata_name):
metadata_index = wilds_dataset.metadata_fields.index(metadata_name)
metadata_vals = wilds_dataset.metadata_array[:, metadata_index]
return sorted(list(set(metadata_vals.view(-1).tolist())))
class WILDSCamelyon(WILDSDataset):
ENVIRONMENTS = [ "hospital_0", "hospital_1", "hospital_2", "hospital_3",
"hospital_4"]
def __init__(self, root, test_envs, hparams):
dataset = Camelyon17Dataset(root_dir=root)
super().__init__(
dataset, "hospital", test_envs, hparams['data_augmentation'], hparams)
class WILDSFMoW(WILDSDataset):
ENVIRONMENTS = [ "region_0", "region_1", "region_2", "region_3",
"region_4", "region_5"]
def __init__(self, root, test_envs, hparams):
dataset = FMoWDataset(root_dir=root)
super().__init__(
dataset, "region", test_envs, hparams['data_augmentation'], hparams)