forked from passalis/dain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_mlp.py
55 lines (37 loc) · 1.71 KB
/
exp_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from train_utils import train_evaluate_anchored, get_average_metrics
import torch.nn as nn
from dain import DAIN_Layer
class MLP(nn.Module):
def __init__(self, mode='adaptive_avg', mean_lr=0.00001, gate_lr=0.001, scale_lr=0.0001):
super(MLP, self).__init__()
self.base = nn.Sequential(
nn.Linear(15 * 144, 512),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(512, 3)
)
self.dean = DAIN_Layer(mode=mode, mean_lr=mean_lr, gate_lr=gate_lr, scale_lr=scale_lr)
def forward(self, x):
x = x.transpose(1, 2)
x = self.dean(x)
x = x.contiguous().view(x.size(0), 15 * 144)
x = self.base(x)
return x
def run_experiments_ablation(model, mode, train_epochs=20, window=10, normalization=None):
results1 = train_evaluate_anchored(model, window=window, train_epochs=train_epochs, horizon=0,
splits=[1, 2, 3, 4, 5, 6, 7, 8],
normalization=normalization)
print("----------")
print("Mode: ", mode)
metrics_1 = get_average_metrics(results1)
print(metrics_1)
mean_lr, std_lr, scale_lr = 1e-06, 0.001, 10
# Baseline 1
model = lambda: MLP(mode=None, mean_lr=mean_lr, gate_lr=scale_lr, scale_lr=std_lr)
run_experiments_ablation(model, 'mlp_std', window=15, normalization='std')
# Baseline 2
model = lambda: MLP(mode='avg', mean_lr=mean_lr, gate_lr=scale_lr, scale_lr=std_lr)
run_experiments_ablation(model, 'mlp_sample_avg', window=15, normalization=None)
# Proposed Method
model = lambda: MLP(mode='full', mean_lr=mean_lr, gate_lr=scale_lr, scale_lr=std_lr)
run_experiments_ablation(model, 'mlp_full', window=15, normalization=None)