-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathanalyze.py
232 lines (177 loc) · 7.32 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import json
import logging
import os
import re
from pathlib import Path
from jsondiff import diff
from pydantic import BaseModel, Field
from algokit.core.proc import RunResult, run
from algokit.core.utils import find_valid_pipx_command
logger = logging.getLogger(__name__)
TEALER_REPORTS_ROOT = Path.cwd() / ".algokit/static-analysis"
TEALER_SNAPSHOTS_ROOT = TEALER_REPORTS_ROOT / "snapshots"
TEALER_DOT_FILES_ROOT = TEALER_REPORTS_ROOT / "tealer"
TEALER_VERSION = "0.1.2"
class TealerBlock(BaseModel):
short: str
blocks: list[list[str]]
class TealerExecutionPath(BaseModel):
data_type: str = Field(alias="type")
count: int
description: str
check: str
impact: str
confidence: str
data_help: str = Field(alias="help")
paths: list[TealerBlock]
class TealerAnalysisReport(BaseModel):
success: bool
data_error: str | None = Field(alias="error")
result: list[TealerExecutionPath]
def _extract_line(block: list[str]) -> str:
return f"{int(block[0].split(':')[0])}-{int(block[-1].split(':')[0])}"
def _extract_lines(block: list[list[str]]) -> str:
return "->".join([_extract_line(b) for b in block])
def generate_report_filename(file: Path, duplicate_files: dict[str, int]) -> str:
base_filename = file.stem
duplicate_count = duplicate_files.get(base_filename, 0)
duplicate_files[base_filename] = duplicate_count + 1
return f"{base_filename}_{duplicate_count}.json" if duplicate_count else f"{base_filename}.json"
def load_tealer_report(file_path: str) -> TealerAnalysisReport:
"""
Load and parse the tealer report from the specified file path.
Args:
file_path (str): The path to the tealer report file.
Returns:
TealerAnalysisReport: Parsed tealer analysis report.
"""
with Path(file_path).open() as file:
data = json.load(file)
return TealerAnalysisReport(**data)
def prepare_artifacts_folders(output_dir: Path | None) -> None:
"""
Create necessary artifacts folders if they do not exist.
Args:
output_dir (Path | None): The output directory path.
"""
if output_dir:
output_dir.mkdir(parents=True, exist_ok=True)
TEALER_REPORTS_ROOT.mkdir(parents=True, exist_ok=True)
TEALER_SNAPSHOTS_ROOT.mkdir(parents=True, exist_ok=True)
TEALER_DOT_FILES_ROOT.mkdir(parents=True, exist_ok=True)
def ensure_tealer_installed() -> None:
"""
Install tealer if it's not already installed.
"""
try:
run(
["tealer", "--version"],
bad_return_code_error_message="tealer --version failed, please check your tealer install",
)
except Exception as e:
logger.debug(e)
logger.info("Tealer not found; attempting to install it...")
pipx_command = find_valid_pipx_command(
"Unable to find pipx install so that `tealer` static analyzer can be installed; "
"please install pipx via https://pypa.github.io/pipx/ "
"and then try `algokit task analyze ...` again."
)
run(
[*pipx_command, "install", f"tealer=={TEALER_VERSION}"],
bad_return_code_error_message=(
"Unable to install tealer via pipx; please install tealer "
"manually and try `algokit task analyze ...` again."
),
)
logger.info("Tealer installed successfully via pipx!")
def generate_tealer_command(cur_file: Path, report_output_path: Path, detectors_to_exclude: list[str]) -> list[str]:
"""
Generate the tealer command for analyzing TEAL programs.
Args:
cur_file (Path): The current file to be analyzed.
report_output_path (Path): The path to the report output.
detectors_to_exclude (list[str]): List of detectors to be excluded.
Returns:
list[str]: The generated tealer command.
"""
command = [
"tealer",
"--json",
str(report_output_path),
"detect",
"--contracts",
str(cur_file),
]
if detectors_to_exclude:
excluded_detectors = ", ".join(detectors_to_exclude)
command.extend(["--exclude", excluded_detectors])
return command
def run_tealer(command: list[str]) -> RunResult:
"""
Run the tealer command and return the result.
Args:
command (list[str]): The command to be executed.
Returns:
RunResult: The result of running the tealer command.
"""
return run(
command,
cwd=Path.cwd(),
env={
"TEALER_ROOT_OUTPUT_DIR": str(TEALER_DOT_FILES_ROOT),
**os.environ,
},
)
def has_baseline_diff(*, cur_file: Path, report_output_path: Path, old_report: TealerAnalysisReport) -> bool:
"""
Handle the difference between the old and new reports for baseline comparison.
Args:
cur_file (Path): The current file being analyzed.
report_output_path (Path): The path to the report output.
old_report (TealerAnalysisReport): The old report for comparison.
Returns:
None
"""
new_report = load_tealer_report(str(report_output_path))
baseline_diff = diff(old_report.model_dump(by_alias=True), new_report.model_dump(by_alias=True))
if baseline_diff:
new_report_path = report_output_path.with_suffix(".received.json")
new_report_path.write_text(json.dumps(new_report.model_dump(by_alias=True), indent=2))
logger.error(
f"Diff detected in {cur_file}! Please check the content of the snapshot report "
f"{report_output_path} against the latest received report at {new_report_path}."
)
return True
return False
def generate_summaries(reports: dict, detectors_to_exclude: list[str]) -> dict[Path, list[list[str]]]:
"""
Generate the summaries for STDOUT from the tealer reports.
Args:
reports (dict): A dictionary containing the reports.
detectors_to_exclude (list[str]): List of detectors to be excluded.
Returns:
dict[Path, list[list[str]]]: A dictionary containing the table rows.
"""
# Initialize an empty dictionary to store table rows.
table_data: dict[Path, list[list[str]]] = {}
# Iterate through each report in the reports dictionary.
for report_path, _ in reports.items():
report = load_tealer_report(report_path)
relative_path = Path(report_path).relative_to(Path.cwd())
# Process each item in the report's result.
for item in report.result:
if item.count == 0 or item.check in detectors_to_exclude:
continue
check_type = item.check
impact_level = item.impact
detailed_description = item.description + " " + item.data_help
# Extract URL from the description, if present.
found_url = re.search(r"(?P<url>https?://[^\s]+)", detailed_description)
description_with_url = found_url.group("url") if found_url else detailed_description
# Compile a list of paths or mark as 'N/A' if none.
path_details = ",\n".join(_extract_lines(block.blocks) for block in item.paths) or "N/A"
# Add the compiled data to the table_data dictionary.
if relative_path not in table_data:
table_data[relative_path] = []
table_data[relative_path].append([check_type, impact_level, description_with_url, path_details])
return table_data