-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathchapterInterval.tex
94 lines (78 loc) · 3.12 KB
/
chapterInterval.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
\chapter{Interval}
\section{Introduction}
\rih{Two-way range.} The current scanning node as the pivot, need to scan its left neighbors and right neighbors.
$$
|\leftarrow p \rightarrow |
$$
If the relationship between the pivot and its neighbors is symmetric, since scanning range is $[i-k, i+k]$ and iterating from left to right, only consider $[i-k, i]$ to avoid duplication.
$$
|\leftarrow p
$$
\section{Operations}
\runinhead{Merge intervals.} Given a collection of intervals, merge all overlapping intervals.
\textbf{Core clues}:
\begin{enumerate}
\item Sort the intervals
\item When does the overlapping happens?
[0, 5) vs. [2, 6); [0, 5) vs. [2, 4)
\end{enumerate}
\begin{python}
def merge(self, itvls):
itvls.sort(key=lambda x: x.start)
ret = [itvls[0]]
for cur in itvls[1:]:
pre = ret[-1]
if cur.start <= pre.end: # overlap
pre.end = max(pre.end, cur.end)
else:
ret.append(cur)
return ret
\end{python}
\runinhead{Insert intervals.} Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). Assume that the intervals were initially sorted according to their start times.
\textbf{Core clues}
\begin{enumerate}
\item Partition the original list of intervals to left-side intervals and right-side intervals according to the new interval.
\item Merge the intermediate intervals with the new interval. Need to mathematically prove it works as expected.
\end{enumerate}
\begin{python}
def insert(self, itvls, newItvl):
s, e = newItvl.start, newItvl.end
left = filter(lambda x: x.end < s, itvls)
right = filter(lambda x: x.start > e, itvls)
if len(left) + len(right) != len(itvls):
s = min(s, itvls[len(left)].start)
e = max(e, itvls[~len(right)].end)
# itvls[-len(right)-1]
return left + [Interval(s, e)] + right
\end{python}
\section{Event-driven algorithms}
\subsection{Introduction}
The core philosophy of event-driven algorithm:
\begin{enumerate}
\item \textbf{Event}: define \textit{event}; the event are sorted by time of appearance.
\item \textbf{Heap}: define \textit{heap meaning}.
\item \textbf{Transition}: define \textit{transition functions} among events impacting the.
heap.
\end{enumerate}
\subsection{Questions}
\runinhead{Maximal overlaps.} Given a list of number intervals, find max number of overlapping
intervals.
\runinhead{Core clues:}
\begin{enumerate}
\item \textbf{Event}: Every new start of an interval is an event. Scan the sorted intervals (sort the interval by \textit{start}).
\item \textbf{Heap meaning}: Heap stores the \textit{end} of the interval.
\item \textbf{Transition}: Put the ending time into heap, and pop the ending time earlier than the new start time from heap. And we need min-heap to pop the early ones.
\end{enumerate}
\newpage
\begin{python}
def max_overlapping(intervals):
maxa = 0
intervals.sort(key=lambda x: x.start)
h_end = []
for itvl in intervals:
heapq.heappush(h_end, itvl.end)
while h_end and h_end[0] <= itvl.start:
heapq.heappop(h_end)
maxa = max(maxa, len(h_end))
return maxa
\end{python}