-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_linear_regression_me.py
47 lines (39 loc) · 1.37 KB
/
simple_linear_regression_me.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Simple Linier Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
# Fitting simple liniear regression to the trainning set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train,y_train)
# Predicting the test set result
y_pred = regressor.predict(X_test)
# Visualing the Training set result
plt.scatter(X_train,y_train,color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('salary vs experience')
plt.xlabel('years of experience')
plt.ylabel('Salary')
plt.show()
# Visualing the Test set result
plt.scatter(X_test,y_test,color = 'red')
plt.plot(X_train, regressor.predict(X_train),color = 'blue')
plt.title('salary vs experience')
plt.xlabel('years of experience')
plt.ylabel('Salary')
plt.show()