-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbt_with_prediction_lstm_bracket_order.py
150 lines (120 loc) · 4.6 KB
/
bt_with_prediction_lstm_bracket_order.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from datetime import datetime, timedelta
import backtrader as bt
import numpy as np
from keras.models import model_from_json
class SmaCross(bt.Strategy):
params = dict(
limit=0.005,
limdays=2,
limdays2=1000,
)
def __init__(self):
self.dataclose = self.datas[0].close
self.order = None
self.orefs = list()
# self.signal_add(bt.SIGNAL_LONG, bt.ind.CrossOver(sma1, sma2))
# load json and create model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
self.model = model_from_json(loaded_model_json)
# load weights into new model
self.model.load_weights("model.h5")
print("Loaded model from disk")
# evaluate loaded model on test data
self.model.compile(loss='mean_squared_error', optimizer='adam')
def log(self, txt, dt=None):
''' Logging function fot this strategy'''
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def notify_order(self, order):
if order.getstatusname() not in ['Accepted', 'Submitted']:
print('{}: Order ref: {} / Type: {} / Status: {} / Price: {:.4f}'.format(
self.data.datetime.date(0),
order.ref, 'Buy' * order.isbuy() or 'Sell',
order.getstatusname(),
order.price
))
if not order.alive() and order.ref in self.orefs:
self.orefs.remove(order.ref)
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
predicted_close = self.model.predict(np.array([[[self.dataclose[0]]]]))
predicted_close = predicted_close[0][0]
prev_predicted_close = self.model.predict(np.array([[[self.dataclose[-1]]]]))
prev_predicted_close = prev_predicted_close[0][0]
if self.orefs:
return # pending orders do nothing
if not self.position:
if predicted_close > prev_predicted_close:
close = self.data.close[0]
p1 = close * (1.0 - self.p.limit)
p2 = p1 - 0.02 * close
p3 = p1 + 0.06 * close
print('p1: {:.4f}, p2: {:.4f}, p3: {:.4f}'.format(
p1,
p2,
p3
))
valid1 = timedelta(self.p.limdays)
valid2 = valid3 = timedelta(self.p.limdays2)
os = self.buy_bracket(
price=p1, valid=valid1,
stopprice=p2, stopargs=dict(valid=valid2),
limitprice=p3, limitargs=dict(valid=valid3), )
self.orefs = [o.ref for o in os]
if predicted_close < prev_predicted_close:
close = self.data.close[0]
p1 = close * (1.0 + self.p.limit)
p2 = p1 + 0.02 * close
p3 = p1 - 0.06 * close
print('p1: {:.4f}, p2: {:.4f}, p3: {:.4f}'.format(
p1,
p2,
p3
))
valid1 = timedelta(self.p.limdays)
valid2 = valid3 = timedelta(self.p.limdays2)
os = self.sell_bracket(
price=p1, valid=valid1,
stopprice=p2, stopargs=dict(valid=valid2),
limitprice=p3, limitargs=dict(valid=valid3), )
self.orefs = [o.ref for o in os]
# if not self.position:
# if predicted_close > prev_predicted_close:
# self.order = self.buy()
# else:
# if predicted_close < prev_predicted_close:
# self.order = self.sell()
cerebro = bt.Cerebro()
data = bt.feeds.GenericCSVData(
dataname='eur_usd_1d.csv',
separator=',',
dtformat=('%Y%m%d'),
tmformat=('%H%M%S'),
datetime=0,
time=-1,
open=2,
high=3,
low=4,
close=5,
volume=6,
openinterest=-1
)
# data = bt.feeds.YahooFinanceData(dataname='YHOO', fromdate=datetime(2011, 1, 1),
# todate=datetime(2012, 12, 31))
cerebro.adddata(data)
cerebro.broker.setcash(1000.0)
cerebro.addsizer(bt.sizers.FixedSize, stake=100)
cerebro.addstrategy(SmaCross)
# Print out the starting conditions
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Run over everything
cerebro.run()
# Print out the final result
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
# cerebro.plot()