-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsimple_bb.py
81 lines (66 loc) · 2.11 KB
/
simple_bb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from datetime import datetime, timedelta
import backtrader as bt
class BBStrategy(bt.SignalStrategy):
params = dict(
diff=0.01,
limit=0.005,
limdays=10,
limdays2=1000,
period=14,
devfactor=2,
)
def __init__(self):
self.order = None
self.dataclose = self.datas[0].close
self.bb = bt.indicators.BollingerBands()
def log(self, txt, dt=None, doprint=False):
'''Logging function fot this strategy'''
if doprint:
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def stop(self):
cash = self.broker.getvalue()
self.log('(BB period: %d | BB devfactor %d) Ending Value %.2f' %
(self.p.period, self.p.devfactor, self.broker.getvalue()), doprint=True)
def next(self):
if self.order:
return
if not self.position:
if self.dataclose[0] > self.bb.lines.bot[0] and self.dataclose[-1] <= self.bb.lines.bot[-1]:
self.order = self.buy()
else:
if self.dataclose[0] < self.bb.lines.top[0] and self.dataclose[-1] >= self.bb.lines.top[-1]:
self.order = self.sell()
cerebro = bt.Cerebro()
strats = cerebro.optstrategy(
BBStrategy,
devfactor=range(2, 10),
period=range(2, 100),
)
data = bt.feeds.GenericCSVData(
dataname='eur_usd_1d.csv',
separator=',',
dtformat=('%Y%m%d'),
tmformat=('%H%M00'),
datetime=0,
time=1,
open=2,
high=3,
low=4,
close=5,
volume=6,
openinterest=-1
)
# data = bt.feeds.YahooFinanceData(dataname='YHOO', fromdate=datetime(2011, 1, 1),
# todate=datetime(2012, 12, 31))
cerebro.adddata(data)
cerebro.addsizer(bt.sizers.FixedSize, stake=50)
# cerebro.addstrategy(SimpleSMAStrategy)
# Print out the starting conditions
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Run over everything
cerebro.run()
# Print out the final result
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
# cerebro.run()
# cerebro.plot()