|
| 1 | +from datetime import datetime |
| 2 | +import backtrader as bt |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +from keras.models import model_from_json |
| 6 | + |
| 7 | + |
| 8 | +class SmaCross(bt.Strategy): |
| 9 | + params = ( |
| 10 | + ('pfast', 100), ('pslow', 300), |
| 11 | + ('stoploss', 0.01), |
| 12 | + ('profit_mult', 3), |
| 13 | + ('prdata', False), |
| 14 | + ('prtrade', False), |
| 15 | + ('prorder', False), |
| 16 | + ) |
| 17 | + |
| 18 | + def __init__(self): |
| 19 | + self.dataclose = self.datas[0].close |
| 20 | + self.order = None |
| 21 | + self.order_dict = {} |
| 22 | + |
| 23 | + # self.signal_add(bt.SIGNAL_LONG, bt.ind.CrossOver(sma1, sma2)) |
| 24 | + # load json and create model |
| 25 | + json_file = open('model.json', 'r') |
| 26 | + loaded_model_json = json_file.read() |
| 27 | + json_file.close() |
| 28 | + self.model = model_from_json(loaded_model_json) |
| 29 | + # load weights into new model |
| 30 | + self.model.load_weights("model.h5") |
| 31 | + print("Loaded model from disk") |
| 32 | + |
| 33 | + # evaluate loaded model on test data |
| 34 | + self.model.compile(loss='mean_squared_error', optimizer='adam') |
| 35 | + |
| 36 | + def log(self, txt, dt=None): |
| 37 | + ''' Logging function fot this strategy''' |
| 38 | + dt = dt or self.datas[0].datetime.date(0) |
| 39 | + print('%s, %s' % (dt.isoformat(), txt)) |
| 40 | + |
| 41 | + def notify_order(self, order): |
| 42 | + if order.status in [order.Margin, order.Rejected]: |
| 43 | + return |
| 44 | + elif order.status == order.Completed: |
| 45 | + if 'name' in order.info: |
| 46 | + self.broker.cancel(self.order_dict[order.ref]) |
| 47 | + self.order = None |
| 48 | + else: |
| 49 | + if order.isbuy(): |
| 50 | + stop_loss = order.executed.price * (1.0 - (self.p.stoploss)) |
| 51 | + take_profit = order.executed.price * (1.0 + self.p.profit_mult * (self.p.stoploss)) |
| 52 | + |
| 53 | + sl_ord = self.sell(exectype=bt.Order.Stop, |
| 54 | + price=stop_loss) |
| 55 | + sl_ord.addinfo(name="Stop") |
| 56 | + |
| 57 | + tkp_ord = self.sell(exectype=bt.Order.Limit, |
| 58 | + price=take_profit) |
| 59 | + tkp_ord.addinfo(name="Prof") |
| 60 | + |
| 61 | + self.order_dict[sl_ord.ref] = tkp_ord |
| 62 | + self.order_dict[tkp_ord.ref] = sl_ord |
| 63 | + |
| 64 | + elif order.issell(): |
| 65 | + stop_loss = order.executed.price * (1.0 + (self.p.stoploss)) |
| 66 | + take_profit = order.executed.price * (1.0 - 3 * (self.p.stoploss)) |
| 67 | + |
| 68 | + sl_ord = self.buy(exectype=bt.Order.Stop, |
| 69 | + price=stop_loss) |
| 70 | + sl_ord.addinfo(name="Stop") |
| 71 | + |
| 72 | + tkp_ord = self.buy(exectype=bt.Order.Limit, |
| 73 | + price=take_profit) |
| 74 | + tkp_ord.addinfo(name="Prof") |
| 75 | + |
| 76 | + self.order_dict[sl_ord.ref] = tkp_ord |
| 77 | + self.order_dict[tkp_ord.ref] = sl_ord |
| 78 | + |
| 79 | + if self.p.prorder: |
| 80 | + print("Open: %s %s %.2f %.2f %.2f" % |
| 81 | + (order.ref, |
| 82 | + self.data.num2date(order.executed.dt).date().isoformat(), |
| 83 | + order.executed.price, |
| 84 | + order.executed.size, |
| 85 | + order.executed.comm)) |
| 86 | + |
| 87 | + def notify_trade(self, trade): |
| 88 | + if not trade.isclosed: |
| 89 | + return |
| 90 | + |
| 91 | + self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % |
| 92 | + (trade.pnl, trade.pnlcomm)) |
| 93 | + |
| 94 | + def next(self): |
| 95 | + # print('Date: ', self.datas[0].datetime.datetime(0)) |
| 96 | + predicted_close = self.model.predict(np.array([[[self.dataclose[0]]]])) |
| 97 | + # predicted_close = scaler.inverse_transform(predicted_close)[0][0] |
| 98 | + predicted_close = predicted_close[0][0] |
| 99 | + prev_predicted_close = self.model.predict(np.array([[[self.dataclose[-1]]]])) |
| 100 | + prev_predicted_close = prev_predicted_close[0][0] |
| 101 | + # print('Current close price: ', self.dataclose[0]) |
| 102 | + # print('Predicted next close price: ', predicted_close) |
| 103 | + |
| 104 | + if self.order: |
| 105 | + return |
| 106 | + |
| 107 | + if not self.position: |
| 108 | + if predicted_close > prev_predicted_close: |
| 109 | + self.order = self.buy() |
| 110 | + else: |
| 111 | + if predicted_close < prev_predicted_close: |
| 112 | + self.order = self.sell() |
| 113 | + |
| 114 | +cerebro = bt.Cerebro() |
| 115 | + |
| 116 | +data = bt.feeds.GenericCSVData( |
| 117 | + dataname='eur_usd_1d.csv', |
| 118 | + separator=',', |
| 119 | + dtformat=('%Y%m%d'), |
| 120 | + tmformat=('%H%M%S'), |
| 121 | + datetime=0, |
| 122 | + time=-1, |
| 123 | + open=2, |
| 124 | + high=3, |
| 125 | + low=4, |
| 126 | + close=5, |
| 127 | + volume=6, |
| 128 | + openinterest=-1 |
| 129 | +) |
| 130 | + |
| 131 | +# data = bt.feeds.YahooFinanceData(dataname='YHOO', fromdate=datetime(2011, 1, 1), |
| 132 | +# todate=datetime(2012, 12, 31)) |
| 133 | +cerebro.adddata(data) |
| 134 | +cerebro.broker.setcash(1000.0) |
| 135 | + |
| 136 | +cerebro.addsizer(bt.sizers.FixedSize, stake=10) |
| 137 | + |
| 138 | +cerebro.addstrategy(SmaCross) |
| 139 | +# Print out the starting conditions |
| 140 | +print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) |
| 141 | + |
| 142 | +# Run over everything |
| 143 | +cerebro.run() |
| 144 | + |
| 145 | +# Print out the final result |
| 146 | +print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) |
| 147 | + |
| 148 | +# cerebro.plot() |
0 commit comments