forked from dagrejs/dagre
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgreedy-fas.js
118 lines (97 loc) · 3.28 KB
/
greedy-fas.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
var _ = require("./lodash"),
Graph = require("./graphlib").Graph,
List = require("./data/list");
/*
* A greedy heuristic for finding a feedback arc set for a graph. A feedback
* arc set is a set of edges that can be removed to make a graph acyclic.
* The algorithm comes from: P. Eades, X. Lin, and W. F. Smyth, "A fast and
* effective heuristic for the feedback arc set problem." This implementation
* adjusts that from the paper to allow for weighted edges.
*/
module.exports = greedyFAS;
var DEFAULT_WEIGHT_FN = _.constant(1);
function greedyFAS(g, weightFn) {
if (g.nodeCount() <= 1) {
return [];
}
var state = buildState(g, weightFn || DEFAULT_WEIGHT_FN);
var results = doGreedyFAS(state.graph, state.buckets, state.zeroIdx);
// Expand multi-edges
return _.flatten(_.map(results, function(e) {
return g.outEdges(e.v, e.w);
}), true);
}
function doGreedyFAS(g, buckets, zeroIdx) {
var results = [],
sources = buckets[buckets.length - 1],
sinks = buckets[0];
var entry;
while (g.nodeCount()) {
while ((entry = sinks.dequeue())) { removeNode(g, buckets, zeroIdx, entry); }
while ((entry = sources.dequeue())) { removeNode(g, buckets, zeroIdx, entry); }
if (g.nodeCount()) {
for (var i = buckets.length - 2; i > 0; --i) {
entry = buckets[i].dequeue();
if (entry) {
results = results.concat(removeNode(g, buckets, zeroIdx, entry, true));
break;
}
}
}
}
return results;
}
function removeNode(g, buckets, zeroIdx, entry, collectPredecessors) {
var results = collectPredecessors ? [] : undefined;
_.each(g.inEdges(entry.v), function(edge) {
var weight = g.edge(edge),
uEntry = g.node(edge.v);
if (collectPredecessors) {
results.push({ v: edge.v, w: edge.w });
}
uEntry.out -= weight;
assignBucket(buckets, zeroIdx, uEntry);
});
_.each(g.outEdges(entry.v), function(edge) {
var weight = g.edge(edge),
w = edge.w,
wEntry = g.node(w);
wEntry["in"] -= weight;
assignBucket(buckets, zeroIdx, wEntry);
});
g.removeNode(entry.v);
return results;
}
function buildState(g, weightFn) {
var fasGraph = new Graph(),
maxIn = 0,
maxOut = 0;
_.each(g.nodes(), function(v) {
fasGraph.setNode(v, { v: v, "in": 0, out: 0 });
});
// Aggregate weights on nodes, but also sum the weights across multi-edges
// into a single edge for the fasGraph.
_.each(g.edges(), function(e) {
var prevWeight = fasGraph.edge(e.v, e.w) || 0,
weight = weightFn(e),
edgeWeight = prevWeight + weight;
fasGraph.setEdge(e.v, e.w, edgeWeight);
maxOut = Math.max(maxOut, fasGraph.node(e.v).out += weight);
maxIn = Math.max(maxIn, fasGraph.node(e.w)["in"] += weight);
});
var buckets = _.range(maxOut + maxIn + 3).map(function() { return new List(); });
var zeroIdx = maxIn + 1;
_.each(fasGraph.nodes(), function(v) {
assignBucket(buckets, zeroIdx, fasGraph.node(v));
});
return { graph: fasGraph, buckets: buckets, zeroIdx: zeroIdx };
}
function assignBucket(buckets, zeroIdx, entry) {
if (!entry.out) {
buckets[0].enqueue(entry);
} else if (!entry["in"]) {
buckets[buckets.length - 1].enqueue(entry);
} else {
buckets[entry.out - entry["in"] + zeroIdx].enqueue(entry);
}
}