You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This quick start guide is meant as a very brief overview of some of the things
that can be done with NumCpp. For a full breakdown of everything available
in the NumCpp library please visit the Full Documentation.
CONTAINERS
The main data structure in NumCpp is the NdArray. It is inherently a 2D array class, with 1D arrays being implemented as 1xN arrays. There is also a DataCube class that is provided as a convenience container for storing an array of 2D NdArrays, but it has limited usefulness past a simple container.
NumPy
NumCpp
a = np.array([[1, 2], [3, 4], [5, 6]])
nc::NdArray<int> a = { {1, 2}, {3, 4}, {5, 6} }
a.reshape([2, 3])
a.reshape(2, 3)
a.astype(np.double)
a.astype<double>()
INITIALIZERS
Many initializer functions are provided that return NdArrays for common needs.
NumPy
NumCpp
np.linspace(1, 10, 5)
nc::linspace<dtype>(1, 10, 5)
np.arange(3, 7)
nc::arange<dtype>(3, 7)
np.eye(4)
nc::eye<dtype>(4)
np.zeros([3, 4])
nc::zeros<dtype>(3, 4)
nc::NdArray<dtype>(3, 4) a = 0
np.ones([3, 4])
nc::ones<dtype>(3, 4)
nc::NdArray<dtype>(3, 4) a = 1
np.nans([3, 4])
nc::nans(3, 4)
nc::NdArray<double>(3, 4) a = nc::constants::nan
np.empty([3, 4])
nc::empty<dtype>(3, 4)
nc::NdArray<dtype>(3, 4) a
SLICING/BROADCASTING
NumCpp offers NumPy style slicing and broadcasting.
NumPy
NumCpp
a[2, 3]
a(2, 3)
a[2:5, 5:8]
a(nc::Slice(2, 5), nc::Slice(5, 8))
a({2, 5}, {5, 8})
a[:, 7]
a(a.rSlice(), 7)
a[a > 5]
a[a > 0]
a[a > 5] = 0
a.putMask(a > 5, 0)
RANDOM
The random module provides simple ways to create random arrays.
NumPy
NumCpp
np.random.seed(666)
nc::random::seed(666)
np.random.randn(3, 4)
nc::random::randN<double>(nc::Shape(3, 4))
nc::random::randN<double>({3, 4})
np.random.randint(0, 10, [3, 4])
nc::random::randInt<int>(nc::Shape(3, 4), 0, 10)
nc::random::randInt<int>({3, 4}, 0, 10)
np.random.rand(3, 4)
nc::random::rand<double>(nc::Shape(3,4))
nc::random::rand<double>({3, 4})
np.random.choice(a, 3)
nc::random::choice(a, 3)
CONCATENATION
Many ways to concatenate NdArray are available.
NumPy
NumCpp
np.stack([a, b, c], axis=0)
nc::stack({a, b, c}, nc::Axis::ROW)
np.vstack([a, b, c])
nc::vstack({a, b, c})
np.hstack([a, b, c])
nc::hstack({a, b, c})
np.append(a, b, axis=1)
nc::append(a, b, nc::Axis::COL)
DIAGONAL, TRIANGULAR, AND FLIP
The following return new NdArrays.
NumPy
NumCpp
np.diagonal(a)
nc::diagonal(a)
np.triu(a)
nc::triu(a)
np.tril(a)
nc::tril(a)
np.flip(a, axis=0)
nc::flip(a, nc::Axis::ROW)
np.flipud(a)
nc::flipud(a)
np.fliplr(a)
nc::fliplr(a)
ITERATION
NumCpp follows the idioms of the C++ STL providing iterator pairs to iterate on arrays in different fashions.
NumPy
NumCpp
for value in a
for(auto it = a.begin(); it < a.end(); ++it)
for(auto& value : a)
LOGICAL
Logical FUNCTIONS in NumCpp behave the same as NumPy.
NumPy
NumCpp
np.where(a > 5, a, b)
nc::where(a > 5, a, b)
np.any(a)
nc::any(a)
np.all(a)
nc::all(a)
np.logical_and(a, b)
nc::logical_and(a, b)
np.logical_or(a, b)
nc::logical_or(a, b)
np.isclose(a, b)
nc::isclose(a, b)
np.allclose(a, b)
nc::allclose(a, b)
COMPARISONS
NumPy
NumCpp
np.equal(a, b)
nc::equal(a, b)
a == b
np.not_equal(a, b)
nc::not_equal(a, b)
a != b
rows, cols = np.nonzero(a)
auto [rows, cols] = nc::nonzero(a)
MINIMUM, MAXIMUM, SORTING
NumPy
NumCpp
np.min(a)
nc::min(a)
np.max(a)
nc::max(a)
np.argmin(a)
nc::argmin(a)
np.argmax(a)
nc::argmax(a)
np.sort(a, axis=0)
nc::sort(a, nc::Axis::ROW)
np.argsort(a, axis=1)
nc::argsort(a, nc::Axis::COL)
np.unique(a)
nc::unique(a)
np.setdiff1d(a, b)
nc::setdiff1d(a, b)
np.diff(a)
nc::diff(a)
REDUCERS
Reducers accumulate values of NdArrays along specified axes. When no axis is specified, values are accumulated along all axes.
NumPy
NumCpp
np.sum(a)
nc::sum(a)
np.sum(a, axis=0)
nc::sum(a, nc::Axis::ROW)
np.prod(a)
nc::prod(a)
np.prod(a, axis=0)
nc::prod(a, nc::Axis::ROW)
np.mean(a)
nc::mean(a)
np.mean(a, axis=0)
nc::mean(a, nc::Axis::ROW)
np.count_nonzero(a)
nc::count_nonzero(a)
np.count_nonzero(a, axis=0)
nc::count_nonzero(a, nc::Axis::ROW)
I/O
Print and file output methods. All NumCpp classes support a print() method and << stream operators.
NumPy
NumCpp
print(a)
a.print()
std::cout << a
a.tofile(filename, sep=’\n’)
a.tofile(filename, '\n')
np.fromfile(filename, sep=’\n’)
nc::fromfile<dtype>(filename, '\n')
np.dump(a, filename)
nc::dump(a, filename)
np.load(filename)
nc::load<dtype>(filename)
MATHEMATICAL FUNCTIONS
NumCpp universal functions are provided for a large set number of mathematical functions.