A selection of best-performing designs generated with RoboGrammar for four different terrains.
Commands were tested on Ubuntu 18.04.
CMake >= 3.8
- Check with
cmake --version
GLEW
sudo apt-get install libglew-dev
Python 3.6 or later + headers
- Check the Python version with
python3 —-version
. If new enough, install Python headers:sudo apt-get install python3-dev
- Otherwise, install the latest version of both:
sudo apt-get install python3.9 python3.9-dev
Note: Newer versions of Python may be available through the "deadsnakes" PPA:
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update
git clone https://github.com/allanzhao/RoboGrammar.git
cd RoboGrammar
git submodule update --init
mkdir build; cd build
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo ..
make -j8
(replace 8 with the number of CPU cores available)
Make sure you are in the RoboGrammar
directory.
pip3 install virtualenv
python3 -m venv venv
source venv/bin/activate
pip install -U pip
pip install torch==1.12.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
Make sure you are in the RoboGrammar
directory, and that the virtualenv is active:
source venv/bin/activate
Run MPC for selected designs, and visualize (change -j8
to use more CPU cores):
python3 examples/design_search/viewer.py RidgedTerrainTask data/designs/grammar_apr30.dot -j8 0, 7, 1, 13, 1, 2, 16, 12, 13, 6, 4, 19, 4, 17, 5, 3, 2, 16, 4, 5, 18, 9, 8, 9, 9, 8 -o
python3 examples/design_search/viewer.py FlatTerrainTask data/designs/grammar_apr30.dot -j8 0, 12, 7, 1, 12, 3, 10, 1, 3, 1, 12, 12, 1, 3, 10, 2, 16, 8, 1, 3, 12, 4, 1, 3, 2, 12, 18, 9, 18, 8, 5, 5, 1, 12, 6, 3 -o
python3 examples/design_search/viewer.py GapTerrainTask data/designs/grammar_apr30.dot -j8 0, 1, 1, 7, 1, 6, 10, 3, 2, 4, 10, 10, 3, 16, 4, 16, 18, 2, 5, 16, 8, 4, 8, 8, 18, 4, 5, 15, 9, 8, 8 -o
python3 examples/design_search/viewer.py FrozenLakeTask data/designs/grammar_apr30.dot -j8 0, 1, 1, 1, 6, 7, 10, 11, 13, 2, 4, 3, 4, 16, 8, 14, 4, 8, 3, 15, 15, 5, 3, 9, 8 -o
Run Graph Heuristic Search to find optimal designs (for flat terrain):
python3 examples/graph_learning/heuristic_search_algo_mpc.py --task FlatTerrainTask --grammar-file data/designs/grammar_apr30.dot --no-noise
Run the MCTS and random search baselines (5000 iterations, flat terrain):
python3 examples/design_search/design_search.py -a mcts -j8 -i5000 -d40 --log_dir logs_mcts FlatTerrainTask data/designs/grammar_apr30.dot
python3 examples/design_search/design_search.py -a random -j8 -i5000 -d40 --log_dir logs_random FlatTerrainTask data/designs/grammar_apr30.dot
The search algorithms output .csv log files containing each design/rule sequence tried and its reward.
I get the error The RandR headers were not found
- Install the X server development files:
sudo apt-get install xorg-dev
I get the error RuntimeError: Could not open file "data/shaders/default.vert.glsl"
when trying to run examples
- Set the
ROBOT_DESIGN_DATA_DIR
environment variable:export ROBOT_DESIGN_DATA_DIR=$PWD/data/