-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathattributed_qa_eval.py
333 lines (275 loc) · 11.4 KB
/
attributed_qa_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import numpy as np
import evaluate
import json
import re
from openai import OpenAI, AzureOpenAI
from tqdm import tqdm
import time, os
from sciriff.eval.metrics import util
from sciriff.eval.metrics.lm_judge import retrieve_batch_job_results, fetch_batch_file
########################################
# Call judge LLM to compare model answer to reference.
API_KEY = os.getenv('OPENAI_API_KEY')
CLIENT = OpenAI()
def create_batch_file(instances):
tasks = []
for idx, instance in enumerate(instances):
prompt = make_prompt(instance)
task = {
"custom_id": f"task-{idx}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
# "model": "gpt-4o-mini-2024-07-18",
"model": "gpt-4o-2024-08-06",
# "model": "gpt-3.5-turbo-0125",
"messages": [
{
"role": "user",
"content": prompt,
},
],
}
}
tasks.append(task)
timestr = time.strftime("%Y%m%d-%H%M%S")
os.makedirs("./attributed_qa_eval-logs", exist_ok=True)
file_name = f"./attributed_qa_eval-logs/{timestr}-batch_tasks.jsonl"
with open(file_name, 'w') as file:
for task in tasks:
file.write(json.dumps(task) + '\n')
return file_name
def submit_batch_job(file_name):
batch_file = CLIENT.files.create(
file=open(file_name, "rb"),
purpose="batch"
)
batch_job = CLIENT.batches.create(
input_file_id=batch_file.id,
endpoint="/v1/chat/completions",
completion_window="24h"
)
print(f"Submitted job ID: {batch_job.id}")
return batch_job.id
def get_batch_results(batch_job_id):
while True:
batch_job = CLIENT.batches.retrieve(batch_job_id)
if batch_job.status == "completed":
break
time.sleep(60) # Wait for 1 minute before checking again
result_file_id = batch_job.output_file_id
result = CLIENT.files.content(result_file_id).content
results = []
for line in result.decode().split('\n'):
if line:
results.append(json.loads(line))
return results
def call_lm_judge(prompt):
chat_completion = CLIENT.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt,
},
],
model="gpt-4o-2024-08-06",
)
return chat_completion.choices[0].message.content
def make_prompt(instance):
lines = instance["prompt"].split("\n")
title = lines[lines.index("----------------------------------------") + 1]
question = [line for line in lines if re.match("^Question:", line)]
if len(question) != 1:
raise ValueError("Couldn't find the question.")
question = question[0].replace("Question: ", "")
excerpts = "\n".join(instance["ref"]["evidence"])
prompt = f"""\
Below you will be shown a paper title, an excerpt from the paper, and a question
about the excerpt. Then, you will be given a reference answer written by an expert,
followed by a model-generated answer. Please rate the similarity of the model answer
to the reference on a 1-5 scale. Do not penalize the model for including additional
information that is not in the reference.
- 5: The model answer includes all important information found in the reference.
- 3: The model answer is somewhat similar to the reference, but not completely accurate.
- 1: The model answer is totally inaccurate or is unrelated to the reference.
In your response, give an explanation for your rating, followed by your rating.
Response format:
Explanation: Your explanation here.
Rating: A single integer between 1 and 5.
_Do not_ include any additional text after the rating.
Here's the article, question, and answers:
Title: {title}
Excerpts:
{excerpts}
Question: {question}
Reference answer: {instance['ref']['answer']}
Model answer: {instance['pred']['answer'] if 'answer' in instance['pred'] else None}
"""
prompt = prompt.replace(" ", "")
return prompt
def extract_rating(response):
pattern = r"Rating:\s*(\d+)"
match = re.search(pattern, response)
if match:
score = int(match.group(1))
if score in [1, 2, 3, 4, 5]:
return score
else:
print("Invalid score from LM judge.")
return 3
else:
print("Failed to extract LM judge rating")
return 3
def batch_lm_judge(instances, lm_judge_raw=None, lm_judge_mapping=None):
if not lm_judge_raw.exists():
file_name = create_batch_file(instances)
batch_job_id = submit_batch_job(file_name)
with open(lm_judge_mapping, 'w') as f:
json.dump({'batch_id': batch_job_id}, f)
# results = get_batch_results(batch_job_id)
return None
else:
results = json.load(open(lm_judge_raw))
ratings = []
for result in results:
# response = result['response']['choices'][0]['message']['content']
response = result['response']['body']['choices'][0]['message']['content']
rating = extract_rating(response)
ratings.append(rating)
return ratings
def lm_judge(instance):
"Have a judge LM grade how well the answer matches reference, on a scale of 1 to 5."
# Get rid of leading space.
prompt = make_prompt(instance)
response = call_lm_judge(prompt)
rating = extract_rating(response)
return rating
########################################
# Evaluator.
class AttributedQAEval:
"Attributed question answer. Answer the question and provide evidence."
def _normalize_answer(self, answer):
"If the model gave a list as the answer instead of a string, convert it."
if isinstance(answer, str):
self.failure_counts["answer_entry_is_str"]["yes"] += 1
return answer
elif isinstance(answer, list):
self.failure_counts["answer_entry_is_str"]["no"] += 1
return " ".join([str(x) for x in util.flatten(answer)])
elif isinstance(answer, dict):
self.failure_counts["answer_entry_is_str"]["no"] += 1
return str(answer)
else:
raise Exception("Unexpected answer type")
def _evaluate_one(self, instance, use_batch_api=False):
# Compute answer token F1. Record cases where the answer failed and give no
# credit.
# In some cases the model doesn't return a dict; just mark these as None.
if isinstance(instance["pred"], dict):
answer_pred = instance["pred"].get("answer", None)
evs_pred = instance["pred"].get("evidence", None)
else:
answer_pred = None
evs_pred = None
# Answer accuracy.
answer_ref = instance["ref"]["answer"]
self.answers["refs_all"].append(answer_ref)
if answer_pred is None:
self.failure_counts["answer"]["no"] += 1
self.scores["f1_answer_all"].append(0)
self.answers["preds_all"].append("")
if self.do_lm_judge:
self.scores["lm_judge"].append(1)
else:
self.failure_counts["answer"]["yes"] += 1
answer_pred = self._normalize_answer(answer_pred)
f1_answer = util.compute_token_f1(answer_pred, answer_ref)
self.scores["f1_answer_all"].append(f1_answer)
self.scores["f1_answer_parsed"].append(f1_answer)
if self.do_lm_judge and not use_batch_api:
lm_judge_score = lm_judge(instance)
self.scores["lm_judge"].append(lm_judge_score)
self.answers["refs_parsed"].append(answer_ref)
for the_key in ["preds_all", "preds_parsed"]:
self.answers[the_key].append(answer_pred)
# Same for the evidence
if evs_pred is None:
self.failure_counts["evidence"]["no"] += 1
self.scores["f1_evidence_all"].append(0)
else:
# Flatten in case the model returned the wrong list structure.
self.failure_counts["evidence"]["yes"] += 1
ev_pred = " ".join(util.flatten(evs_pred))
ev_ref = " ".join(instance["ref"]["evidence"])
f1_evidence = util.compute_token_f1(ev_pred, ev_ref)
self.scores["f1_evidence_all"].append(f1_evidence)
self.scores["f1_evidence_parsed"].append(f1_evidence)
def _get_rouge_scores(self):
scorer = evaluate.load("rouge")
res = {}
for version in ["parsed", "all"]:
scores_loop = scorer.compute(
predictions=self.answers[f"preds_{version}"],
references=self.answers[f"refs_{version}"],
)
for k, v in scores_loop.items():
res[f"{k}_{version}"] = v
return res
def evaluate(self, instances, lm_judge_file=None, lm_judge_raw_file=None, lm_judge_mapping=None, use_batch_api=False):
self.lm_judge_file = lm_judge_file
self.do_lm_judge = False
if self.lm_judge_file is not None:
if self.lm_judge_file.exists():
lm_judge_scores = json.load(open(self.lm_judge_file))
else:
self.do_lm_judge = True
lm_judge_scores = []
else:
lm_judge_scores = None
self.scores = {
"f1_answer_parsed": [],
"f1_answer_all": [],
"f1_evidence_parsed": [],
"f1_evidence_all": [],
"lm_judge": lm_judge_scores,
}
self.failure_counts = {
"answer": util.count_dict(["yes", "no"]),
"evidence": util.count_dict(["yes", "no"]),
"answer_entry_is_str": util.count_dict(["yes", "no"]),
}
self.answers = {
"preds_parsed": [],
"refs_parsed": [],
"preds_all": [],
"refs_all": [],
}
# Get token F1 scores for answer and evidence.
for instance in instances:
self._evaluate_one(instance, use_batch_api)
# Dump LM judge scores so we don't need to recompute.
if lm_judge_raw_file and not lm_judge_raw_file.exists() and lm_judge_mapping.exists():
with open(lm_judge_mapping, 'r') as f:
batcth_id = json.load(f)['batch_id']
file_id = fetch_batch_file(API_KEY, batcth_id)
retrieve_batch_job_results(file_id, lm_judge_raw_file)
if self.do_lm_judge:
if use_batch_api:
self.scores["lm_judge"] = batch_lm_judge(instances, lm_judge_raw=lm_judge_raw_file, lm_judge_mapping=lm_judge_mapping)
if not self.scores["lm_judge"]:
return
with open(self.lm_judge_file, ("w")) as f:
json.dump(self.scores["lm_judge"], f, indent=2)
scores = {k: np.mean(v) for k, v in self.scores.items() if v is not None}
# Rescale LM judge scores from 0 to 1
if "lm_judge" in scores:
scores["lm_judge"] = (scores["lm_judge"] - 1) / 4
# Get rouge scores.
rouge_scores = self._get_rouge_scores()
scores.update(rouge_scores)
for k in self.failure_counts:
self.failure_counts[k]["frac_success"] = util.safe_div(
self.failure_counts[k]["yes"], util.sum_dict(self.failure_counts[k])
)
res = {"scores": scores, "answer_parse": self.failure_counts}
return res