-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_output.py
378 lines (335 loc) · 16.5 KB
/
multi_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
import os, sys
import numpy as np
import time
import argparse
np.warnings.filterwarnings('ignore')
from models import MLP
from data_utils import get_rl_dataset
from utils import AverageMeter
import wandb
def train(epoch, net, optimizer, criterion,
verbose=False, disp_per_batch=10):
if verbose:
print('\nEpoch: %d' % epoch)
train_losses = AverageMeter()
for batch_idx, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_losses.update(loss.data.item(), inputs.shape[0])
if verbose and (batch_idx+1) % disp_per_batch == 0:
print(f"Batch [{batch_idx+1}/{len(train_loader)}]: "
f"Loss: {train_losses.val:.6f}")
return train_losses.avg
def test(epoch, net, criterion, loader,
verbose=False, disp_per_batch=10):
test_losses = AverageMeter()
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.to(device), targets.to(device)
with torch.no_grad():
outputs = net(inputs)
loss = criterion(outputs, targets)
test_losses.update(loss.data.item(), inputs.shape[0])
if verbose and (batch_idx+1) % 10 == 0:
print(f"Batch [{batch_idx+1}/{len(loader)}]: "
f"Loss: {test_losses.val:.6f}")
return test_losses.avg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--dataset", type=str, default="cartpole",
help="{cartpole|half-cheetah|humanoid|swimmer|walker|ant|hopper}")
parser.add_argument("--data_path", type=str, default="./rl_data/")
parser.add_argument("--no_standardize", action="store_true")
parser.add_argument("--cal_ratio", type=float, default=0.1)
parser.add_argument("--recal_ratio", type=float, default=0.0)
parser.add_argument("--test_ratio", type=float, default=0.2)
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument("--cal_batch_size", type=int, default=1024)
parser.add_argument("--depth", type=int, default=3)
parser.add_argument("--width", type=int, default=64)
parser.add_argument("--epochs", type=int, default=1500)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--wd", type=float, default=0.0)
parser.add_argument("--decay_factor", type=float, default=0.1)
parser.add_argument("--decay_per_epoch", type=int, default=500)
parser.add_argument("--disp_per_epoch", type=int, default=20)
parser.add_argument("--alpha", type=float, default=0.1)
parser.add_argument("--name", type=str, default="")
parser.add_argument("--save_path", type=str, default='./runs/multi_output')
parser.add_argument("--wandb_project_name", type=str, default="multi_output")
parser.add_argument("--load_models", action="store_true")
parser.add_argument("--load_path", type=str, default=None)
parser.add_argument("--conformal_erm_epochs", type=int, default=1000)
parser.add_argument("--conformal_erm_disp_per_epoch", type=int, default=50)
parser.add_argument("--conformal_erm_lr", type=float, default=0.01)
parser.add_argument("--conformal_erm_lam_init", type=float, default=1.0)
parser.add_argument("--conformal_erm_lam_lr", type=float, default=0.1)
parser.add_argument("--conformal_erm_lam_update", type=str, default="miscoverage")
parser.add_argument("--conformal_erm_lam_volume", type=float, default=1e4)
parser.add_argument("--conformal_erm_loss_cons", type=str, default="hinge")
parser.add_argument("--conformal_erm_recal_dataset", type=str, default="recal")
parser.add_argument("--max_score_only", action="store_true")
args = parser.parse_args()
name = args.name + f"_seed={args.seed}"
exp_path = os.path.join(args.save_path, args.dataset, name)
model_path = os.path.join(exp_path, "models")
if not os.path.exists(exp_path):
os.makedirs(exp_path)
if not os.path.exists(model_path):
os.makedirs(model_path)
wandb_run = wandb.init(
project=args.wandb_project_name,
config=args,
name=args.dataset + "/" + name,
dir=exp_path,
)
# Set random seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(args.seed)
print(torch.__version__)
print(device)
# Load the dataset
X, y = get_rl_dataset(args.data_path, args.dataset)
# Standardize x and y
if not args.no_standardize:
x_mean, x_std = np.mean(X, axis=0, keepdims=True), np.std(X, axis=0, keepdims=True)
X = (X - x_mean) / x_std
y_mean, y_std = np.mean(y, axis=0, keepdims=True), np.std(y, axis=0, keepdims=True)
y = (y - y_mean) / y_std
# train test split
n = X.shape[0]
args.train_ratio = 1 - (args.cal_ratio + args.recal_ratio + args.test_ratio)
n1, n2, n3 = int(args.train_ratio * n), int((args.train_ratio+args.cal_ratio) * n), int((1 - args.test_ratio) * n)
perms = np.random.permutation(n)
inds_train, inds_cal, inds_cal_all, inds_test = perms[:n1], perms[n1:n2], perms[n1:n3], perms[n3:]
x_train, y_train = X[inds_train], y[inds_train]
x_cal, y_cal = X[inds_cal], y[inds_cal]
x_cal_all, y_cal_all = X[inds_cal_all], y[inds_cal_all]
x_test, y_test = X[inds_test], y[inds_test]
in_dim, out_dim = x_train.shape[1], y_train.shape[1]
print("Dataset: %s" % args.dataset)
print(
"Dimensions: train set (n=%d, d=%d, d_out=%d), cal_all set (n=%d, d=%d, d_out=%d), test set (n=%d, d=%d, d_out=%d)" %
(x_train.shape[0], x_train.shape[1], y_train.shape[1],
x_cal_all.shape[0], x_cal_all.shape[1], y_cal_all.shape[1],
x_test.shape[0], x_test.shape[1], y_test.shape[1])
)
# create dataloaders
train_dataset = TensorDataset(torch.Tensor(x_train), torch.Tensor(y_train))
cal_dataset = TensorDataset(torch.Tensor(x_cal), torch.Tensor(y_cal))
cal_all_dataset = TensorDataset(torch.Tensor(x_cal_all), torch.Tensor(y_cal_all))
test_dataset = TensorDataset(torch.Tensor(x_test), torch.Tensor(y_test))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
cal_loader = DataLoader(cal_dataset, batch_size=args.cal_batch_size, shuffle=True)
cal_all_loader = DataLoader(cal_all_dataset, batch_size=args.cal_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=args.cal_batch_size, shuffle=False)
if args.recal_ratio > 0:
inds_recal = perms[n2:n3]
x_recal, y_recal = X[inds_recal], y[inds_recal]
recal_dataset = TensorDataset(torch.Tensor(x_recal), torch.Tensor(y_recal))
recal_loader = DataLoader(recal_dataset, batch_size=args.cal_batch_size, shuffle=True)
# Create network
net = MLP(in_dim, out_dim=out_dim, depth=args.depth, hidden_dim=args.width, freeze_reps=False).to(device)
# Train model, or optionally load existing model
fn_template = "model.pt"
load_path = args.load_path or model_path
fn = os.path.join(load_path, fn_template)
if args.load_models:
if os.path.exists(fn):
print(f"Loaded network")
net.load_state_dict(torch.load(fn))
else:
raise FileNotFoundError
else:
print(f"Training network")
wandb.define_metric(f"net/step")
wandb.define_metric(f"net/*", step_metric=f"net/step")
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd)
lambda1 = lambda ep: np.power(args.decay_factor, ep // args.decay_per_epoch)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
criterion = nn.MSELoss(reduction="mean")
train_losses = list()
test_losses = list()
curr_time = time.time()
for epoch in range(args.epochs):
# train for one epoch
train_loss = train(epoch, net, optimizer, criterion)
train_losses.append(train_loss)
# test
test_loss = test(epoch, net, criterion, test_loader)
test_losses.append(test_loss)
wandb.log({f"net/train_loss": train_loss,
f"net/test_loss": test_loss,
f"net/step": epoch + 1})
if (epoch + 1) % args.disp_per_epoch == 0:
print(f"\nEpoch [{epoch + 1}]")
print(f"Training loss = {train_loss:.4f}, Test loss = {test_loss:.4f}")
print(f"Elapsed time = {time.time() - curr_time:.4f}s")
curr_time = time.time()
scheduler.step()
print(f"Training finished\n")
torch.save(net.state_dict(), fn)
# Method 0: Learn conformal interval [f_i(x) - t, f_j(x) + t] for same t
count = 0
scores = torch.zeros(len(cal_all_dataset)).to(device)
for (i, batch) in enumerate(cal_all_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
scores[count:(count + inputs.shape[0])] = torch.max(torch.abs(net(inputs) - targets), dim=1)[0]
count += inputs.shape[0]
critical_score = torch.sort(scores)[0][int(np.ceil((1 - args.alpha) * (len(cal_all_dataset) + 1)))]
# test coverage and volume
coverage = 0.
volume = (critical_score ** out_dim)
for (i, batch) in enumerate(test_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
coverage += torch.sum(torch.prod(torch.abs(net(inputs) - targets) <= critical_score, dim=1))
coverage /= len(test_dataset)
print(f"Conformal with max score, test_coverage={coverage:.4f}, test_volume={volume:.4e}")
print(critical_score)
wandb.run.summary[f"max_score/test_coverage"] = coverage
wandb.run.summary[f"max_score/test_volume"] = volume
if args.max_score_only:
sys.exit()
# Method 1: Learn Conformal interval [f_j(x) - t_j, f_j(x) + t_j] via union bound
# using the cal_all dataset
# Note: alpha denotes miscoverage level (0.1)
alpha_per_j = args.alpha / out_dim
critical_scores = torch.zeros([1, out_dim]).to(device)
for j in range(out_dim):
scores = torch.zeros(len(cal_dataset)).to(device)
count = 0
for (i, batch) in enumerate(cal_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
scores[count:(count + inputs.shape[0])] = torch.abs(net(inputs)[:, j] - targets[:, j])
count += inputs.shape[0]
critical_scores[0, j] = torch.sort(scores)[0][int(np.ceil((1-alpha_per_j) * (len(cal_dataset) + 1)))]
# test coverage and volume
coverage = 0.
volume = torch.prod(critical_scores)
for (i, batch) in enumerate(test_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
coverage += torch.sum(torch.prod(torch.abs(net(inputs) - targets) <= critical_scores, dim=1))
coverage /= len(test_dataset)
print(f"Conformal + union bound, test_coverage={coverage:.4f}, test_volume={volume:.4e}")
print(critical_scores)
wandb.run.summary[f"union/test_coverage"] = coverage
wandb.run.summary[f"union/test_volume"] = volume
# Method 2: Re-conformalize above interval
ts = torch.zeros(len(recal_dataset)).to(device)
count = 0
for (i, batch) in enumerate(recal_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
ts[count:(count + inputs.shape[0])] = torch.max(torch.abs(net(inputs) - targets) / critical_scores, dim=1)[0]
count += inputs.shape[0]
critical_t = torch.sort(ts)[0][int(np.ceil((1-args.alpha) * (len(recal_dataset) + 1)))]
print(f"Critical_t={critical_t:.4f}")
# test coverage and volume
coverage = 0.
volume = torch.prod(critical_scores * critical_t)
for (i, batch) in enumerate(test_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
coverage += torch.sum(torch.prod(torch.abs(net(inputs) - targets) <= critical_scores * critical_t, dim=1))
coverage /= len(test_dataset)
print(f"Conformal + union bound + recalib, test_coverage={coverage:.4f}, test_volume={volume:.4e}")
print(critical_scores * critical_t)
wandb.run.summary[f"union_recal/test_coverage"] = coverage
wandb.run.summary[f"union_recal/test_volume"] = volume
wandb.run.summary[f"union_recal/t_recal"] = critical_t
# Method 3: Optimal volume via smooth ERM
logit_ts = -5.0 * torch.ones([1, out_dim]).to(device)
lam_volume = args.conformal_erm_lam_volume
lam = torch.tensor(args.conformal_erm_lam_init).to(device)
logit_ts.requires_grad = True
optimizer = optim.SGD([logit_ts], lr=args.conformal_erm_lr, momentum=0.)
wandb.define_metric("conformal_erm/step")
wandb.define_metric("conformal_erm/*", step_metric="conformal_erm/step")
for epoch in range(args.conformal_erm_epochs):
losses = AverageMeter()
losses_obj = AverageMeter()
losses_cons = AverageMeter()
miscoverages = AverageMeter()
for (i, batch) in enumerate(cal_loader):
optimizer.zero_grad()
inputs, targets = batch[0].to(device), batch[1].to(device)
outputs = net(inputs)
ts = torch.exp(logit_ts)
loss_obj = torch.prod(ts)
cons_vals = 1.0 - torch.max(torch.abs(targets - outputs) / ts, dim=1)[0]
miscoverage = torch.mean((cons_vals < 0).float())
# smoothified constraint loss
if args.conformal_erm_loss_cons == "hinge":
loss_cons = torch.mean(torch.max(-cons_vals + 1, torch.tensor(0.)))
elif args.conformal_erm_loss_cons == "logistic":
loss_cons = torch.mean(torch.log(1 + torch.exp(-cons_vals)))
loss = lam_volume * loss_obj + lam * loss_cons
loss.backward()
# gradient descent optimizer
optimizer.step()
# increase lambda by constraint violation
if args.conformal_erm_lam_update == "miscoverage":
cons_violation = torch.max(miscoverage - args.alpha, torch.tensor(0.))
elif args.conformal_erm_lam_update == "loss":
cons_violation = torch.max(loss_cons - args.alpha, torch.tensor(0.))
with torch.no_grad():
lam += args.conformal_erm_lam_lr * cons_violation
losses.update(loss.data.item(), inputs.shape[0])
losses_obj.update(loss_obj.data.item(), inputs.shape[0])
losses_cons.update(loss_cons.data.item(), inputs.shape[0])
miscoverages.update(miscoverage.data.item(), inputs.shape[0])
log_dict = {
"conformal_erm/loss": losses.avg,
"conformal_erm/loss_obj": losses_obj.avg,
"conformal_erm/loss_cons": losses_cons.avg,
"conformal_erm/miscoverage": miscoverages.avg,
"conformal_erm/lam": lam,
"conformal_erm/step": epoch + 1,
}
wandb.log(log_dict)
if (epoch + 1) % args.conformal_erm_disp_per_epoch == 0:
print(f"Epoch [{epoch + 1}/{args.conformal_erm_epochs}]")
print(f"Loss={losses.avg:.4f}")
print(f"Loss_obj={losses_obj.avg:.4f}, Loss_cons={losses_cons.avg:.4f}, "
f"Miscoverage_error={miscoverages.avg:.4f}, lam={lam:.4f}")
print(f"ts={ts}")
# Reconformalize and test the performances
critical_scores = torch.exp(logit_ts).clone()
print(f"Initial critical_scores={critical_scores}")
count = 0
if args.conformal_erm_recal_dataset == "recal":
cerm_recal_set, cerm_recal_loader = recal_dataset, recal_loader
elif args.conformal_erm_recal_dataset == "cal":
cerm_recal_set, cerm_recal_loader = cal_dataset, cal_loader
new_ts = torch.zeros(len(cerm_recal_set)).to(device)
for (i, batch) in enumerate(cerm_recal_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
# import pdb; pdb.set_trace()
new_ts[count:(count + inputs.shape[0])] = torch.max(torch.abs(net(inputs) - targets) / critical_scores, dim=1)[0]
count += inputs.shape[0]
critical_t = torch.sort(new_ts)[0][int(np.ceil((1-args.alpha) * (len(cerm_recal_set) + 1)))]
print(f"Critical_t={critical_t:.4f}")
# test coverage and volume
coverage = 0.
volume = torch.prod(critical_scores * critical_t)
for (i, batch) in enumerate(test_loader):
inputs, targets = batch[0].to(device), batch[1].to(device)
coverage += torch.sum(torch.prod(torch.abs(net(inputs) - targets) <= critical_scores * critical_t, dim=1))
coverage /= len(test_dataset)
print(f"Conformal ERM method, test_coverage={coverage:.4f}, test_volume={volume:.4e}")
print(critical_scores * critical_t)
wandb.run.summary[f"conformal_erm/recal_test_coverage"] = coverage
wandb.run.summary[f"conformal_erm/recal_test_volume"] = volume
wandb.run.summary[f"conformal_erm/t_recal"] = critical_t