-
Notifications
You must be signed in to change notification settings - Fork 4
/
citeseer.log
187 lines (186 loc) · 7.97 KB
/
citeseer.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/home/allenhaozhu/anaconda3/bin/python /home/allenhaozhu/Downloads/COLES-Neurips2021/train_ssgc_citeseer.py
tensor(-0.5451, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.5713, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.5987, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.6274, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.6574, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.6887, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.7215, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.7557, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.7915, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.8290, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.8681, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.9089, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.9516, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-0.9962, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.0428, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.0914, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.1422, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.1952, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.2506, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.3083, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.3686, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.4315, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.4970, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.5653, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.6365, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.7106, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.7878, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.8682, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-1.9518, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.0387, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.1291, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.2231, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.3206, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.4219, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.5271, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.6361, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.7491, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.8663, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-2.9876, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.1133, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.2433, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.3778, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.5168, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.6605, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.8089, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-3.9622, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-4.1203, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-4.2834, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-4.4516, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-4.6249, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-4.8035, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-4.9874, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-5.1766, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-5.3713, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-5.5715, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-5.7773, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-5.9888, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-6.2060, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-6.4291, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-6.6580, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-6.8928, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-7.1336, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-7.3805, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-7.6336, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-7.8928, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-8.1582, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-8.4299, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-8.7080, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-8.9925, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-9.2834, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-9.5809, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-9.8849, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-10.1955, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-10.5128, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-10.8367, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-11.1674, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-11.5049, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-11.8492, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-12.2004, device='cuda:0', grad_fn=<DivBackward0>)
tensor(-12.5585, device='cuda:0', grad_fn=<DivBackward0>)
Test Accuracy: 0.7159054097829608
Test Accuracy: 0.6935536119209589
Test Accuracy: 0.7091026886945254
Test Accuracy: 0.7100745059928734
Test Accuracy: 0.7116942014901199
Test Accuracy: 0.7019760285066408
Test Accuracy: 0.713961775186265
Test Accuracy: 0.6993845157110463
Test Accuracy: 0.6987366375121478
Test Accuracy: 0.7061872367994817
Test Accuracy: 0.7197926789763525
Test Accuracy: 0.7129899578879171
Test Accuracy: 0.7256235827664399
Test Accuracy: 0.724651765468092
Test Accuracy: 0.7308066083576288
Test Accuracy: 0.7097505668934241
Test Accuracy: 0.70229996760609
Test Accuracy: 0.7006802721088435
Test Accuracy: 0.7240038872691934
Test Accuracy: 0.7295108519598316
Test Accuracy: 0.7116942014901199
Test Accuracy: 0.717201166180758
Test Accuracy: 0.7029478458049887
Test Accuracy: 0.718172983479106
Test Accuracy: 0.7184969225785552
Test Accuracy: 0.7220602526724975
Test Accuracy: 0.7233560090702947
Test Accuracy: 0.7220602526724975
Test Accuracy: 0.7110463232912213
Test Accuracy: 0.7282150955620343
Test Accuracy: 0.7029478458049887
Test Accuracy: 0.718172983479106
Test Accuracy: 0.7197926789763525
Test Accuracy: 0.691609977324263
Test Accuracy: 0.7100745059928734
Test Accuracy: 0.7078069322967282
Test Accuracy: 0.7087787495950761
Test Accuracy: 0.70229996760609
Test Accuracy: 0.7230320699708455
Test Accuracy: 0.7100745059928734
Test Accuracy: 0.7152575315840622
Test Accuracy: 0.6993845157110463
Test Accuracy: 0.7178490443796566
Test Accuracy: 0.7278911564625851
Test Accuracy: 0.7278911564625851
Test Accuracy: 0.718172983479106
Test Accuracy: 0.6987366375121478
Test Accuracy: 0.7230320699708455
Test Accuracy: 0.703271784904438
Test Accuracy: 0.7230320699708455
71.33009394233883
1.0070069862858315
Test Accuracy: 0.6951331496786042
Test Accuracy: 0.6877869605142333
Test Accuracy: 0.6611570247933884
Test Accuracy: 0.6972757881848791
Test Accuracy: 0.6648301193755739
Test Accuracy: 0.70462197734925
Test Accuracy: 0.6645240281603918
Test Accuracy: 0.6920722375267829
Test Accuracy: 0.7049280685644322
Test Accuracy: 0.6636057545148454
Test Accuracy: 0.6954392408937864
Test Accuracy: 0.6703397612488522
Test Accuracy: 0.7122742577288032
Test Accuracy: 0.660238751147842
Test Accuracy: 0.6853382307927762
Test Accuracy: 0.6458524640342822
Test Accuracy: 0.6629935720844812
Test Accuracy: 0.6770737679828589
Test Accuracy: 0.6360575451484543
Test Accuracy: 0.6801346801346801
Test Accuracy: 0.6440159167431895
Test Accuracy: 0.667278849097031
Test Accuracy: 0.6565656565656566
Test Accuracy: 0.7003367003367004
Test Accuracy: 0.677379859198041
Test Accuracy: 0.6761554943373125
Test Accuracy: 0.7015610651974288
Test Accuracy: 0.6706458524640343
Test Accuracy: 0.6816651362105908
Test Accuracy: 0.6446280991735537
Test Accuracy: 0.6810529537802265
Test Accuracy: 0.7104377104377104
Test Accuracy: 0.6709519436792164
Test Accuracy: 0.6813590449954087
Test Accuracy: 0.6752372206917662
Test Accuracy: 0.6357514539332721
Test Accuracy: 0.6887052341597796
Test Accuracy: 0.6568717477808387
Test Accuracy: 0.6856443220079583
Test Accuracy: 0.6737067646158555
Test Accuracy: 0.6155494337312519
Test Accuracy: 0.6715641261095806
Test Accuracy: 0.662381389654117
Test Accuracy: 0.6464646464646465
Test Accuracy: 0.6902356902356902
Test Accuracy: 0.6749311294765841
Test Accuracy: 0.687174778083869
Test Accuracy: 0.647995102540557
Test Accuracy: 0.6911539638812366
Test Accuracy: 0.7294153657790021
67.51698806244262
2.210413417771133
Process finished with exit code 0