-
Notifications
You must be signed in to change notification settings - Fork 4
/
load_process.py
244 lines (191 loc) · 8.92 KB
/
load_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import numpy as np
import scipy.sparse as sp
from preprocess import eliminate_self_loops as eliminate_self_loops_adj, largest_connected_components
class SparseGraph:
"""Attributed labeled graph stored in sparse matrix form.
"""
def __init__(self, adj_matrix, attr_matrix=None, labels=None,
node_names=None, attr_names=None, class_names=None, metadata=None):
"""Create an attributed graph.
Parameters
----------
adj_matrix : sp.csr_matrix, shape [num_nodes, num_nodes]
Adjacency matrix in CSR format.
attr_matrix : sp.csr_matrix or np.ndarray, shape [num_nodes, num_attr], optional
Attribute matrix in CSR or numpy format.
labels : np.ndarray, shape [num_nodes], optional
Array, where each entry represents respective node's label(s).
node_names : np.ndarray, shape [num_nodes], optional
Names of nodes (as strings).
attr_names : np.ndarray, shape [num_attr]
Names of the attributes (as strings).
class_names : np.ndarray, shape [num_classes], optional
Names of the class labels (as strings).
metadata : object
Additional metadata such as text.
"""
# Make sure that the dimensions of matrices / arrays all agree
if sp.isspmatrix(adj_matrix):
adj_matrix = adj_matrix.tocsr().astype(np.float32)
else:
raise ValueError("Adjacency matrix must be in sparse format (got {0} instead)"
.format(type(adj_matrix)))
if adj_matrix.shape[0] != adj_matrix.shape[1]:
raise ValueError("Dimensions of the adjacency matrix don't agree")
if attr_matrix is not None:
if sp.isspmatrix(attr_matrix):
attr_matrix = attr_matrix.tocsr().astype(np.float32)
elif isinstance(attr_matrix, np.ndarray):
attr_matrix = attr_matrix.astype(np.float32)
else:
raise ValueError("Attribute matrix must be a sp.spmatrix or a np.ndarray (got {0} instead)"
.format(type(attr_matrix)))
if attr_matrix.shape[0] != adj_matrix.shape[0]:
raise ValueError("Dimensions of the adjacency and attribute matrices don't agree")
if labels is not None:
if labels.shape[0] != adj_matrix.shape[0]:
raise ValueError("Dimensions of the adjacency matrix and the label vector don't agree")
if node_names is not None:
if len(node_names) != adj_matrix.shape[0]:
raise ValueError("Dimensions of the adjacency matrix and the node names don't agree")
if attr_names is not None:
if len(attr_names) != attr_matrix.shape[1]:
raise ValueError("Dimensions of the attribute matrix and the attribute names don't agree")
self.adj_matrix = adj_matrix
self.attr_matrix = attr_matrix
self.labels = labels
self.node_names = node_names
self.attr_names = attr_names
self.class_names = class_names
self.metadata = metadata
def num_nodes(self):
"""Get the number of nodes in the graph."""
return self.adj_matrix.shape[0]
def num_edges(self):
"""Get the number of edges in the graph.
For undirected graphs, (i, j) and (j, i) are counted as single edge.
"""
if self.is_directed():
return int(self.adj_matrix.nnz)
else:
return int(self.adj_matrix.nnz / 2)
def get_neighbors(self, idx):
"""Get the indices of neighbors of a given node.
Parameters
----------
idx : int
Index of the node whose neighbors are of interest.
"""
return self.adj_matrix[idx].indices
def is_directed(self):
"""Check if the graph is directed (adjacency matrix is not symmetric)."""
return (self.adj_matrix != self.adj_matrix.T).sum() != 0
def to_undirected(self):
"""Convert to an undirected graph (make adjacency matrix symmetric)."""
if self.is_weighted():
raise ValueError("Convert to unweighted graph first.")
else:
self.adj_matrix = self.adj_matrix + self.adj_matrix.T
self.adj_matrix[self.adj_matrix != 0] = 1
return self
def is_weighted(self):
"""Check if the graph is weighted (edge weights other than 1)."""
return np.any(np.unique(self.adj_matrix[self.adj_matrix != 0].A1) != 1)
def to_unweighted(self):
"""Convert to an unweighted graph (set all edge weights to 1)."""
self.adj_matrix.data = np.ones_like(self.adj_matrix.data)
return self
# Quality of life (shortcuts)
def standardize(self):
"""Select the LCC of the unweighted/undirected/no-self-loop graph.
All changes are done inplace.
"""
G = self.to_unweighted().to_undirected()
G = eliminate_self_loops(G)
G = largest_connected_components(G, 1)
return G
def unpack(self):
"""Return the (A, X, z) triplet."""
return self.adj_matrix, self.attr_matrix, self.labels
def eliminate_self_loops(G):
G.adj_matrix = eliminate_self_loops_adj(G.adj_matrix)
return G
def load_npz_to_sparse_graph(file_name):
"""Load a SparseGraph from a Numpy binary file.
Parameters
----------
file_name : str
Name of the file to load.
Returns
-------
sparse_graph : SparseGraph
Graph in sparse matrix format.
"""
with np.load(file_name) as loader:
loader = dict(loader)
adj_matrix = sp.csr_matrix((loader['adj_data'], loader['adj_indices'], loader['adj_indptr']),
shape=loader['adj_shape'])
if 'attr_data' in loader:
# Attributes are stored as a sparse CSR matrix
attr_matrix = sp.csr_matrix((loader['attr_data'], loader['attr_indices'], loader['attr_indptr']),
shape=loader['attr_shape'])
elif 'attr_matrix' in loader:
# Attributes are stored as a (dense) np.ndarray
attr_matrix = loader['attr_matrix']
else:
attr_matrix = None
if 'labels_data' in loader:
# Labels are stored as a CSR matrix
labels = sp.csr_matrix((loader['labels_data'], loader['labels_indices'], loader['labels_indptr']),
shape=loader['labels_shape'])
elif 'labels' in loader:
# Labels are stored as a numpy array
labels = loader['labels']
else:
labels = None
node_names = loader.get('node_names')
attr_names = loader.get('attr_names')
class_names = loader.get('class_names')
metadata = loader.get('metadata')
return SparseGraph(adj_matrix, attr_matrix, labels, node_names, attr_names, class_names, metadata)
def save_sparse_graph_to_npz(filepath, sparse_graph):
"""Save a SparseGraph to a Numpy binary file.
Parameters
----------
filepath : str
Name of the output file.
sparse_graph : gust.SparseGraph
Graph in sparse matrix format.
"""
data_dict = {
'adj_data': sparse_graph.adj_matrix.data,
'adj_indices': sparse_graph.adj_matrix.indices,
'adj_indptr': sparse_graph.adj_matrix.indptr,
'adj_shape': sparse_graph.adj_matrix.shape
}
if sp.isspmatrix(sparse_graph.attr_matrix):
data_dict['attr_data'] = sparse_graph.attr_matrix.data
data_dict['attr_indices'] = sparse_graph.attr_matrix.indices
data_dict['attr_indptr'] = sparse_graph.attr_matrix.indptr
data_dict['attr_shape'] = sparse_graph.attr_matrix.shape
elif isinstance(sparse_graph.attr_matrix, np.ndarray):
data_dict['attr_matrix'] = sparse_graph.attr_matrix
if sp.isspmatrix(sparse_graph.labels):
data_dict['labels_data'] = sparse_graph.labels.data
data_dict['labels_indices'] = sparse_graph.labels.indices
data_dict['labels_indptr'] = sparse_graph.labels.indptr
data_dict['labels_shape'] = sparse_graph.labels.shape
elif isinstance(sparse_graph.labels, np.ndarray):
data_dict['labels'] = sparse_graph.labels
if sparse_graph.node_names is not None:
data_dict['node_names'] = sparse_graph.node_names
if sparse_graph.attr_names is not None:
data_dict['attr_names'] = sparse_graph.attr_names
if sparse_graph.class_names is not None:
data_dict['class_names'] = sparse_graph.class_names
if sparse_graph.metadata is not None:
data_dict['metadata'] = sparse_graph.metadata
if not filepath.endswith('.npz'):
filepath += '.npz'
np.savez(filepath, **data_dict)