forked from Liuyuxinict/prenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
241 lines (201 loc) · 9.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from __future__ import print_function
from PIL import Image
import torch.utils.data as data
import os
import PIL
import argparse
from tqdm import tqdm
import torch.optim as optim
from data_loader import load_data
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import re
from utils import *
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def parse_option():
parser = argparse.ArgumentParser('Progressive Region Enhancement Network(PRENet) for training and testing')
parser.add_argument('--batchsize', default=2, type=int, help="batch size for single GPU")
parser.add_argument('--dataset', type=str, default='food101', help='food2k, food101, food500')
parser.add_argument('--image_path', type=str, default="E:/datasets/food101/images/", help='path to dataset')
parser.add_argument("--train_path", type=str, default="E:/datasets/food101/meta_data/train_full.txt", help='path to training list')
parser.add_argument("--test_path", type=str, default="E:/datasets/food101/meta_data/test_full.txt",
help='path to testing list')
parser.add_argument('--weight_path', default="E:/Pretrained_model/food2k_resnet50_0.0001.pth", help='path to the pretrained model')
parser.add_argument('--use_checkpoint', action='store_true', default=True,
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--checkpoint', type=str, default="E:/Pretrained_model/model.pth",
help="the path to checkpoint")
parser.add_argument('--output_dir', default='output', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument("--learning_rate", default=1e-4, type=float,
help="The initial learning rate for SGD.")
parser.add_argument("--epoch", default=200, type=int,
help="The number of epochs.")
parser.add_argument("--test", action='store_true', default=True,
help="Testing model.")
args, unparsed = parser.parse_known_args()
return args
def train(nb_epoch, trainloader, testloader, batch_size, store_name, start_epoch, net,optimizer,exp_lr_scheduler):
exp_dir = store_name
try:
os.stat(exp_dir)
except:
os.makedirs(exp_dir)
CELoss = nn.CrossEntropyLoss()
KLLoss = nn.KLDivLoss(reduction="batchmean")
max_val_acc = 0
#val_acc, val5_acc, _, _, val_loss = test(net, CELoss, batch_size, testloader)
for epoch in range(start_epoch, nb_epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
train_loss1 = 0
train_loss2 = 0
train_loss3 = 0
train_loss4 = 0
correct = 0
total = 0
idx = 0
batch_idx = 0
u1 = 1
u2 = 0.5
for (inputs, targets) in tqdm(trainloader):
idx = batch_idx
if inputs.shape[0] < batch_size:
continue
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
# Step 1
optimizer.zero_grad()
#inputs1 = jigsaw_generator(inputs, 8)
_, _, _, _, output_1, _, _ = net(inputs, False)
#print(output_1.shape)
loss1 = CELoss(output_1, targets) * 1
loss1.backward()
optimizer.step()
# Step 2
optimizer.zero_grad()
#inputs2 = jigsaw_generator(inputs, 4)
_, _, _, _, _, output_2, _, = net(inputs, False)
#print(output_2.shape)
loss2 = CELoss(output_2, targets) * 1
loss2.backward()
optimizer.step()
# Step 3
optimizer.zero_grad()
#inputs3 = jigsaw_generator(inputs, 2)
_, _, _, _, _, _, output_3 = net(inputs, False)
#print(output_3.shape)
loss3 = CELoss(output_3, targets) * 1
loss3.backward()
optimizer.step()
optimizer.zero_grad()
x1, x2, x3, output_concat, _, _, _ = net(inputs,True)
concat_loss = CELoss(output_concat, targets) * 2
#loss4 = -KLLoss(F.softmax(x1, dim=1), F.softmax(x2, dim=1)) / batch_size
#loss5 = -KLLoss(F.softmax(x1, dim=1), F.softmax(x3, dim=1)) / batch_size
loss6 = -KLLoss(F.softmax(x2, dim=1), F.softmax(x1, dim=1))
#loss7 = -KLLoss(F.softmax(x2, dim=1), F.softmax(x3, dim=1)) / batch_size
loss8 = -KLLoss(F.softmax(x3, dim=1), F.softmax(x1, dim=1))
loss9 = -KLLoss(F.softmax(x3, dim=1), F.softmax(x2, dim=1))
Klloss = loss6 + loss8 + loss9
totalloss = u1 * concat_loss + u2 * Klloss
totalloss.backward()
optimizer.step()
# training log
_, predicted = torch.max(output_concat.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
train_loss += (loss1.item() + loss2.item() + loss3.item() + concat_loss.item())
train_loss1 += loss1.item()
train_loss2 += loss2.item()
train_loss3 += loss3.item()
train_loss4 += concat_loss.item()
if batch_idx % 10 == 0:
print(
'Step: %d | Loss1: %.3f | Loss2: %.5f | Loss3: %.5f | Loss_concat: %.5f | Loss: %.3f | Acc: %.3f%% (%d/%d)' % (
batch_idx, train_loss1 / (batch_idx + 1), train_loss2 / (batch_idx + 1),
train_loss3 / (batch_idx + 1), train_loss4 / (batch_idx + 1), train_loss / (batch_idx + 1),
100. * float(correct) / total, correct, total))
batch_idx += 1
exp_lr_scheduler.step()
train_acc = 100. * float(correct) / total
train_loss = train_loss / (idx + 1)
with open(exp_dir + '/results_train.txt', 'a') as file:
file.write(
'Iteration %d | train_acc = %.5f | train_loss = %.5f | Loss1: %.3f | Loss2: %.5f | Loss3: %.5f | Loss_concat: %.5f |\n' % (
epoch, train_acc, train_loss, train_loss1 / (idx + 1), train_loss2 / (idx + 1), train_loss3 / (idx + 1),
train_loss4 / (idx + 1)))
val_acc, val5_acc, val_acc_com, val5_acc_com, val_loss = test(net, CELoss, batch_size, testloader,True)
if val_acc > max_val_acc:
max_val_acc = val_acc
torch.save(net, './' + store_name + '/model.pth')
with open(exp_dir + '/results_test.txt', 'a') as file:
file.write(
'Iteration %d, top1 = %.5f, top5 = %.5f, top1_combined = %.5f, top5_combined = %.5f, test_loss = %.6f\n' % (
epoch, val_acc, val5_acc, val_acc_com, val5_acc_com, val_loss))
def main():
args = parse_option()
train_dataset, train_loader, test_dataset, test_loader = \
load_data(image_path=args.image_path, train_dir=args.train_path, test_dir=args.test_path,batch_size=args.batchsize)
print('Data Preparation : Finished')
if args.dataset == "food101":
NUM_CATEGORIES = 101
elif args.dataset == "food500":
NUM_CATEGORIES = 500
elif args.dataset == "food2k":
NUM_CATEGORIES = 2000
net = load_model('resnet50',pretrain=False,require_grad=True,num_class=NUM_CATEGORIES)
net.fc = nn.Linear(2048, 2000)
state_dict = {}
pretrained = torch.load(args.weight_path)
for k, v in net.state_dict().items():
if k[9:] in pretrained.keys() and "fc" not in k:
state_dict[k] = pretrained[k[9:]]
elif "xx" in k and re.sub(r'xx[0-9]\.?',".", k[9:]) in pretrained.keys():
state_dict[k] = pretrained[re.sub(r'xx[0-9]\.?',".", k[9:])]
else:
state_dict[k] = v
print(k)
net.load_state_dict(state_dict)
net.fc = nn.Linear(2048, NUM_CATEGORIES)
ignored_params = list(map(id, net.features.parameters()))
new_params = filter(lambda p: id(p) not in ignored_params, net.parameters())
optimizer = optim.SGD([
{'params': net.features.parameters(), 'lr': args.learning_rate*0.1},
{'params': new_params, 'lr': args.learning_rate}
],
momentum=0.9, weight_decay=5e-4)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.9)
for p in optimizer.param_groups:
outputs = ''
for k, v in p.items():
if k is 'params':
outputs += (k + ': ' + str(v[0].shape).ljust(30) + ' ')
else:
outputs += (k + ': ' + str(v).ljust(10) + ' ')
print(outputs)
cudnn.benchmark = True
net.cuda()
net = nn.DataParallel(net)
if args.use_checkpoint:
#net.load_state_dict(torch.load(checkpath))
model = torch.load(args.checkpoint).module.state_dict()
net.module.load_state_dict(torch.load(args.checkpoint).module.state_dict())
print('load the checkpoint')
if args.test:
val_acc, val5_acc, val_acc_com, val5_acc_com, val_loss = test(net, nn.CrossEntropyLoss(), args.batchsize, test_loader, True)
print('Accuracy of the network on the val images: top1 = %.5f, top5 = %.5f, top1_combined = %.5f, top5_combined = %.5f, test_loss = %.6f\n' % (
val_acc, val5_acc, val_acc_com, val5_acc_com, val_loss))
return
train(nb_epoch=args.epoch, # number of epoch
trainloader=train_loader,
testloader=test_loader,
batch_size=args.batchsize, # batch size
store_name='model_448_from2k', # folder for output
start_epoch=0,
net=net,
optimizer = optimizer,
exp_lr_scheduler=exp_lr_scheduler) # the start epoch number when you resume the training
if __name__ == "__main__":
main()