-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcam_face_detection.py
141 lines (119 loc) · 5.11 KB
/
cam_face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import cv2
import time
save_path = 'C:\\Users\\a2001\\Desktop\\' #ex: 'C:\\Users\\username\\Desktop\\saved_faces'
cascade = 0 #0 for Haar; 1 for LBP
if (cascade == 0):
face_cascade = cv2.CascadeClassifier('haarcascades\\haarcascade_frontalface_alt.xml')
elif (cascade == 1):
face_cascade = cv2.CascadeClassifier('lbpcascades\\lbpcascade_frontalface.xml')
autoSave = False #autosave pictures when faces detected
markOn = False #leave the detection mark
webcamOn = True #True for webcam; False for video
if(webcamOn):
cap = cv2.VideoCapture(0)
else:
vid = cv2.VideoCapture('..\\database\\image recognition\\examples\\footage.mp4')
blockColor = [
(255, 0, 0), #0:blue
(0, 255, 0), #1:green
(0, 0, 255), #2:red
(255, 255, 0), #3:teal
(0, 255, 255), #4:orange
(255, 0, 255) #5:purple
]
def faceDetection(name):
isOn = True
while(True):
if(webcamOn):
ret, frame = cap.read()
else:
ret, frame = vid.read()
if (not ret):
break
keypress = cv2.waitKey(1)
if(ret is True):
if(not webcamOn):
frame = cv2.resize(frame, None, fx=0.3, fy=0.3, interpolation = cv2.INTER_LINEAR)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
date = time.strftime('%Y%m%d_%H%M%S')
for (x,y,w,h) in faces:
display = frame.copy()
i = 1
cv2.rectangle(frame, (x,y), (x+w, y+h), blockColor[i], 2)
#auto-save
if(autoSave):
mes = 'Faces found: ' + str(len(faces))
print(mes)
if (markOn):
cv2.imwrite((save_path+'saved_faces_'+date+'.jpg'), frame)
else:
cv2.imwrite((save_path+'saved_faces_'+date+'.jpg'), display)
#file saved
text = 'File saved'
boxColor = (200, 255, 200)
textColor = (0, 255, 0)
textBox(frame, text, boxColor, textColor)
#quit
if keypress & 0xFF == ord('q'):
break
#print the number of faces found
if (len(faces) > 0):
mes = 'Faces found: ' + str(len(faces))
#pause
if keypress & 0xFF == ord(' '):
isOn = not isOn
if (not isOn and autoSave == False):
print(mes)
if (markOn):
cv2.imwrite((save_path+'saved_faces_'+date+'.jpg'), frame)
else:
cv2.imwrite((save_path+'saved_faces_'+date+'.jpg'), display)
#file saved
text = 'File saved'
boxColor = (200, 255, 200)
textColor = (15, 15, 15)
textBox(frame, text, boxColor, textColor)
cv2.imshow(name, frame)
#print instruction
if (not autoSave):
text = 'Press \'Space\' to screenshot/Press \'q\' to quit'
boxColor = (235, 235, 235)
textColor = (15, 15, 15)
textBox(frame, text, boxColor, textColor)
else:
#pause
if keypress & 0xFF == ord(' '):
isOn = not isOn
#detection error
text = 'Detection Error: objects(faces) not found'
mes = text
boxColor = (200, 200, 255)
textColor = (0, 0, 255)
textBox(frame, text, boxColor, textColor)
else:
continue
if(isOn):
cv2.imshow(name, frame)
if(webcamOn):
cap.release()
else:
vid.release()
cv2.destroyAllWindows()
def textBox(frame, text, boxColor, textColor):
font = cv2.FONT_HERSHEY_SIMPLEX
size = (frame.shape[1] * 0.8) / frame.shape[1]
thickness = 1
#get boundary of the text
textsize = cv2.getTextSize(text, font, size, thickness)[0]
#get coords
textX = int((frame.shape[1] - textsize[0]) / 2)
textY = frame.shape[0] - textsize[1] * 2
textXa = textX
textXb = textX + textsize[0]
overlay = frame.copy()
cv2.rectangle(overlay, (textXa-3, textY-int(textsize[1]*0.5)), (textXb+3, textY+int(textsize[1]*1.5)), boxColor, -1)
cv2.putText(overlay, text, (textXa, textY+15), font, size, textColor, thickness)
opacity = 0.7
cv2.addWeighted(overlay, opacity, frame, 1 - opacity, 0, frame)
faceDetection('Output')