-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathfmincg.go
238 lines (212 loc) · 7.67 KB
/
fmincg.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
package ml
import (
"fmt"
"github.com/alonsovidales/go_matrix"
"math"
)
// DataSet Interface to be implemented by the machine learning algorithms to be
// used by the Fmincg function in order to reduce the cost
type DataSet interface {
// Returns the cost and gradients for the current thetas configuration
CostFunction(lambda float64, calcGrad bool) (j float64, grad [][][]float64, err error)
// Returns the thetas in a 1xn matrix
rollThetasGrad(x [][][]float64) [][]float64
// Returns the thetas rolled by the rollThetasGrad method as it original form
unrollThetasGrad(x [][]float64) [][][]float64
// Sets the Theta param after convert it to the corresponding internal data structure
setTheta(t [][][]float64)
// Returns the theta as a 3 dimensional slice
getTheta() [][][]float64
}
// Fmincg Minimize a continuous differentialble multivariate function. Starting point
// is given by the "Lambda" property (D by 1), and the method named "CostFunction", must
// return a function value and a vector of partial derivatives. The Polack-
// Ribiere flavour of conjugate gradients is used to compute search directions,
// and a line search using quadratic and cubic polynomial approximations and the
// Wolfe-Powell stopping criteria is used together with the slope ratio method
// for guessing initial step sizes. Additionally a bunch of checks are made to
// make sure that exploration is taking place and that extrapolation will not
// be unboundedly large. The "length" gives the length of the run: if it is
// positive, it gives the maximum number of line searches, if negative its
// absolute gives the maximum allowed number of function evaluations.
// The function returns when either its length is up, or if no further
// progress can be made (ie, we are at a minimum, or so close that due to
// numerical problems, we cannot get any closer). If the function terminates
// within a few iterations, it could be an indication that the function value
// and derivatives are not consistent (ie, there may be a bug in the
// implementation of your "f" function). The function returns "fx" indicating the
// progress made and "i" the number of iterations (line searches or function evaluations,
// depending on the sign of "length") used.
//
// Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
// Ported from Octave to Go by Alonso Vidales <alonso.vidales@tras2.es>
//
//
// (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
//
// Permission is granted for anyone to copy, use, or modify these
// programs and accompanying documents for purposes of research or
// education, provided this copyright notice is retained, and note is
// made of any changes that have been made.
//
// These programs and documents are distributed without any warranty,
// express or implied. As the programs were written for research
// purposes only, they have not been tested to the degree that would be
// advisable in any important application. All use of these programs is
// entirely at the user's own risk.
//
func Fmincg(nn DataSet, lambda float64, length int, verbose bool) (fx []float64, i int, err error) {
rho := 0.01 // a bunch of constants for line searches
sig := 0.5 // RHO and SIG are the constants in the Wolfe-Powell conditions
int := 0.1 // don't reevaluate within 0.1 of the limit of the current bracket
ext := 3.0 // extrapolate maximum 3 times the current bracket
max := 20 // max 20 function evaluations per line search
ratio := 100.0 // maximum allowed slope ratio
red := 1.0
fx = []float64{}
i = 0 // zero the run length counter
lsFailed := false // no previous line search has failed
f1, df1Tmp, err := nn.CostFunction(lambda, true) // get function value and gradient
if err != nil {
return
}
df1 := nn.rollThetasGrad(df1Tmp)
bestTheta := nn.getTheta()
minCost := f1
s := mt.Apply(df1, neg) // search direction is steepest
d1 := mt.MultTrans(mt.Apply(s, neg), s)[0][0] // this is the slope
z1 := red / (float64(1) - d1) // initial step is red/(|s|+1)
mainLoop: for i := 0; i < length; i++ {
var z2 float64
x0 := nn.rollThetasGrad(nn.getTheta()) // make a copy of current values
f0 := f1
df0 := mt.Copy(df1)
x := mt.Sum(x0, mt.MultBy(s, z1)) // begin line search
nn.setTheta(nn.unrollThetasGrad(x))
f2, df2Temp, _ := nn.CostFunction(lambda, true)
df2 := nn.rollThetasGrad(df2Temp)
d2 := mt.MultTrans(df2, s)[0][0]
if f2 < minCost {
bestTheta = nn.getTheta()
minCost = f2
}
// initialize point 3 equal to point 1
f3 := f1
d3 := d1
z3 := -z1
success := false
limit := -1.0
searchLoop: for iters := 0; iters < max*4; iters++ {
m := max
for ((f2 > f1+z1*rho*d1) || (d2 > -sig*d1)) && m > 0 {
limit = z1
if f2 > f1 {
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3)
} else {
a := 6*(f2-f3)/z3 + 3*(d2+d3)
b := 3*(f3-f2) - z3*(d3+2*d2)
z2 = (math.Sqrt(b*b-a*d2*z3*z3) - b) / a // numerical error possible - ok!
}
if z2 != z2 || z2 == math.Inf(1) {
z2 = z3 / 2 // if we had a numerical problem then bisect
}
z2 = math.Max(math.Min(z2, int*z3), (1-int)*z3) // don't accept too close to limits
z1 += z2 // update the step
x = mt.Sum(x, mt.MultBy(s, z2))
nn.setTheta(nn.unrollThetasGrad(x))
f2, df2Temp, _ = nn.CostFunction(lambda, true)
df2 = nn.rollThetasGrad(df2Temp)
if f2 < minCost {
bestTheta = nn.getTheta()
minCost = f2
}
m--
d2 = mt.MultTrans(df2, s)[0][0]
z3 -= z2
}
switch true {
case f2 > f1+z1*rho*d1 || d2 > neg(sig)*d1: // this is a failure
break searchLoop
case d2 > sig*d1:
success = true
break searchLoop
case m == 0: // failure
break searchLoop
}
// make cubic extrapolation
a := 6*(f2-f3)/z3 + 3*(d2+d3)
b := 3*(f3-f2) - z3*(d3+2*d2)
z2 = -d2 * z3 * z3 / (b + math.Sqrt(b*b-a*d2*z3*z3)) // num. error possible - ok!
switch true {
case z2 != z2 || z2 < 0 || z2 == math.Inf(1): // num prob or wrong sign?
z2 = z1 * (ext - 1)
if limit < -0.5 {
z2 = z1 * (ext - 1) // the extrapolate the maximum amount
} else {
z2 = (limit - z1) / 2 // otherwise bisect
}
case limit > -0.5 && z2+z1 > limit:
z2 = (limit - z1) / 2
case limit < -0.5 && z2+z1 > z1*ext:
z2 = z1 * (ext - 1)
case z2 < -z3*int:
z2 = -z3 * int
case limit > -0.5 && z2 < (limit-z1)*(1-int):
z2 = (limit - z1) * (1 - int)
}
// set point 3 equal to point 2
f3 = f2
d3 = d2
z3 = -z2
z1 += z2
x = mt.Sum(x, mt.MultBy(s, z2))
nn.setTheta(nn.unrollThetasGrad(x))
f2, df2Temp, _ = nn.CostFunction(lambda, true)
if f2 < minCost {
bestTheta = nn.getTheta()
minCost = f2
}
df2 = nn.rollThetasGrad(df2Temp)
m--
d2 = mt.MultTrans(df2, s)[0][0]
}
if success {
f1 = f2
fx = append(fx, f1)
if verbose {
fmt.Printf("Iteration: %d | Cost: %f\n", i+1, f1)
}
// Polack-Ribiere direction
s = mt.Sub(mt.MultBy(s, (mt.MultTrans(df2, df2)[0][0]-mt.MultTrans(df1, df2)[0][0])/mt.MultTrans(df1, df1)[0][0]), df2)
// swap derivatives
tmp := df1
df1 = df2
df2 = tmp
d2 = mt.MultTrans(df1, s)[0][0]
if d2 > 0 {
s = mt.Apply(df1, neg)
d2 = mt.MultTrans(mt.Apply(s, neg), s)[0][0]
}
z1 = z1 * math.Min(ratio, d1/d2)
d1 = d2
lsFailed = false
} else {
// restore point from before failed line search
nn.setTheta(nn.unrollThetasGrad(x0))
f1 = f0
df1 = df0
if lsFailed || i > length {
break mainLoop
}
tmp := df1
df1 = df2
df2 = tmp
s = mt.Apply(df1, neg) // try steepest
d1 = mt.MultTrans(mt.Apply(s, neg), s)[0][0]
z1 = red / (float64(1) - d1)
lsFailed = true
}
}
nn.setTheta(bestTheta)
return
}