forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
supconloss.py
108 lines (93 loc) · 4.21 KB
/
supconloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import paddle
from paddle import nn
class SupConLoss(nn.Layer):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self,
views=16,
temperature=0.07,
contrast_mode='all',
base_temperature=0.07,
normalize_feature=True):
super(SupConLoss, self).__init__()
self.temperature = paddle.to_tensor(temperature)
self.contrast_mode = contrast_mode
self.base_temperature = paddle.to_tensor(base_temperature)
self.num_ids = None
self.views = views
self.normalize_feature = normalize_feature
def forward(self, features, labels, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
features = features["features"]
if self.num_ids is None:
self.num_ids = int(features.shape[0] / self.views)
if self.normalize_feature:
features = 1. * features / (paddle.expand_as(
paddle.norm(
features, p=2, axis=-1, keepdim=True), features) + 1e-12)
features = features.reshape([self.num_ids, self.views, -1])
labels = labels.reshape([self.num_ids, self.views])[:, 0]
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.reshape(
[features.shape[0], features.shape[1], -1])
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = paddle.eye(batch_size, dtype='float32')
elif labels is not None:
labels = labels.reshape([-1, 1])
if labels.shape[0] != batch_size:
raise ValueError(
'Num of labels does not match num of features')
mask = paddle.cast(
paddle.equal(labels, paddle.t(labels)), 'float32')
else:
mask = paddle.cast(mask, 'float32')
contrast_count = features.shape[1]
contrast_feature = paddle.concat(
paddle.unbind(
features, axis=1), axis=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = paddle.divide(
paddle.matmul(anchor_feature, paddle.t(contrast_feature)),
self.temperature)
# for numerical stability
logits_max = paddle.max(anchor_dot_contrast, axis=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = paddle.tile(mask, [anchor_count, contrast_count])
logits_mask = 1 - paddle.eye(batch_size * anchor_count)
mask = mask * logits_mask
# compute log_prob
exp_logits = paddle.exp(logits) * logits_mask
log_prob = logits - paddle.log(
paddle.sum(exp_logits, axis=1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = paddle.sum((mask * log_prob),
axis=1) / paddle.sum(mask, axis=1)
# loss
loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos
loss = paddle.mean(loss.reshape([anchor_count, batch_size]))
return {"SupConLoss": loss}