Skip to content

Latest commit

 

History

History
250 lines (158 loc) · 5 KB

README.md

File metadata and controls

250 lines (158 loc) · 5 KB

Bootcamp

This repository will document my journey of obtaining of computer science fundamentals, such as data structures and algorithms. I will add the most relevant and important imformation that I find on my journey, and document it here in the readme. The subsequent repository directories will contain the codebase for implementing these datastructures and algorithms. Thank you for visiting!

Data Structures & Algorithms

Big O Notation

O(1) - Constant time

  • Same amount of time, regardless of the number of elements i.e. Random accesss array

O(log n) - Logarithmic

  • When doubling the number of elements doesn't double the time (binary trees) i.e. Search algorithms

O(n) - Linear

  • Adding element increases the runtime linearly i.e. Looping an array/list

O(n log n) - Quasilinear

  • Every element has to be compared with every other element. Lots of comparisons i.e. Sorting algorithms

O(n^2) - Quadratic

  • 2, 4, 8, 16, 32, 64 Increasing quadratically i.e. Nested loops

O(2^n) - Exponential. Recursion i.e. Fibonacci series

How to identify patterns

Operation takes same amoutn of time (regardless of the number of elements) O(1) i.e.

if(n = 10) {}
int j = 8*1000;

Iterating through a collection (for loop, while loop) O(n) i.e.

for (...) {}
while (...) 

Looping through same collection x2 (nested) O(n^2) i.e.

for (int i) {
   for (int j) {
   }
}

Fibonacci series - recursion O(branch^depth) 2^n i.e.

Searching sorted array (i.e. binary tree) O(log n) i.e.

Sorting O(n log n) i.e.

Rules of thumb

Drop the non-dominant terms

O(n^2 + n) -> O(n^2)

Drop the constants

O(3n) -> O(n)

Add Runtimes: O(n + m)

for (int n: arrayN) {
   print(n);
}

Multiply Runtimes: O(n * m)

for (int n:arrayN) {
   for(int m: arrayM) {
      print(n + "," + n);
}

⚠️ Note: Not O(n^2)

Quick Quiz

Reduce these O(n + log n) -> ?

Click to see answer!O(n)

O(7*2^n + 5000*n^99) -> ?

Click to see answer!O(2^n)

Which is equivalent to O(n)? O(n + m) where m < n/2 ?

Click to see answer!Equivalent

O(2n) ?

Click to see answer!Equivalent

O(n + log n) ?

Click to see answer!Equivalent

O(n + m) ?

Click to see answer!Not Equivalent

Primitive Data Structures (Array, LinkedList, Binary Tree)

Array - killer feature is O(1) random access (get/set)

  1. Can hold anything
  2. Fixed size
  3. Random access

Get O(1)

Set O(1)

Insert O(n)

Delete O(n)


LinkedList - killer feature is O(1) Add Front

  1. No random access
  2. No fixed capacity
  3. Always the right size

getFirst O(1)

getLast O(n)

Add Front O(1)

Add Back O(n)

Delete O(n)

APIs (ArrayList, Stack/Queues, Binary Heap)

ArrayList - Wrapper around array, offers convienance API.

  1. Dynamic resizing

Get O(1)

Set O(1)

Insert O(n)

Delete O(n)

Stack - Killer feature is O(1) push/pop

  1. LIFO - Last in First Out (LIFO)

Access O(n)

Search O(n)

Push O(1)

Pop O(1)

Queue - Killer feature is O(1) add/remove

  1. First in First Out

Access O(n)

Search O(n)

Add O(1)

Remove O(1)

Videos

Top 10 Algorithms for the Coding Interview

https://www.youtube.com/watch?v=r1MXwyiGi_U

Binary Search

https://www.youtube.com/watch?v=P3YID7liBug

Depth First Search (DFS) / Breadth First Search (BFS)

https://www.youtube.com/watch?v=zaBhtODEL0w

Bubble Sort

https://www.youtube.com/watch?v=6Gv8vg0kcHc

Merge Sort

https://www.youtube.com/watch?v=KF2j-9iSf4Q

Quick Sort

https://www.youtube.com/watch?v=SLauY6PpjW4

Hashtables

Big O Notation

https://www.youtube.com/watch?v=v4cd1O4zkGw

Binary Tree Diameter

https://www.youtube.com/watch?v=TQI_m32_AeU

Common Questions

Valid Parenthesis

https://leetcode.com/problems/valid-parentheses/

Longest Palindromic Substring

https://leetcode.com/problems/longest-palindromic-substring/

Reverse Linked List

https://leetcode.com/problems/reverse-linked-list/

Remove Duplicates Linked List

https://leetcode.com/problems/remove-duplicates-from-sorted-list/

Random Study Guides

https://github.com/mission-peace/interview/wiki

Coding University

https://github.com/jwasham/coding-interview-university

Systems Design

System Design Primer

https://github.com/donnemartin/system-design-primer

Grokking System Design Interview

https://www.educative.io/courses/grokking-the-system-design-interview

Academic Courses

CS 61B Berkeley Data Structures

https://inst.eecs.berkeley.edu/~cs61b/fa19/

MIT Introductions to Algorithms 2011

https://www.youtube.com/playlist?list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb

References/Misc

Java Hashcode

https://www.baeldung.com/java-hashcode